Cho tam giác ABC cân tại A , trung tuyến AM , I là trung điểm AC , K là trung điểm AB , E là trung điểm AM . Gọi N là điểm đối xứng của M qua I .
a) Chứng Minh tứ giác AKMI là hình thoi .
b) Tứ giác AMCN , MKIC là hình gì ? Vì sao ?
c) Chứng Minh E là trung điểm BN .
d) Tìm điều kiện của tam giác ABC để tứ giác AMCN là hình vuông .
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
a. Xét tam giác ABC có BM=MC; AI=IC
=> IM là đường trung bình của tam giác ABC => IM//AB; IM=1/2AB=AK
Xét tứ giác AKMI có IM//AK; IM=AK
=> AKMI là hbh
Do AB=AC=> 1/2AB=1/2AC=> AK=AI
Xét hbh AKMI có AK=AI
=> AKMI là hình thoi
b. •Xét tứ giác AMCN có AC, MN là 2 đường chéo cắt nhau tại I và AI=IC MI=IN
=> AMCN là hbh
Do tam giác ABC cân tại A nên AM vừa là trung tuyến vừa là đường cao
=> AMC=90*
Hbh AMCN có AMC=90*
=> AMCN là hcn
• Xét tam giác ABC có AK=BK; BM=MC
=> KM là đường trung bình của tam giác ABC => KM//AC hay KM//IC; KM=1/2AC=IC
Xét tứ giác MKIC có KM//IC; KM=IC
=> MKIC là hbh
c. Do AMCN là hcn nên NAM=90*; AN=MC
Từ NAM=90*=> ANvgAM mà BMvgAM
=> AN//BM
Từ AN=MC mà MC=BM => AN=BM
Xét tứ giác ABMN có AN=BM; AN//BM
=> ABMN là hbh => AM và BN cắt nhau tại trung điểm mỗi đoạn
Mà E là trung điểm của AM
=> E là trung điểm của BN
d. Để AMCN là hình vuông thì AC vg MN
Xét tam giác vuông AMC có MI vừa là trung tuyến vưaf là đường cao
=> AMC vuông cân tại M => ACM=45*=ABM
=> tam giác ABC vuông cân tại A