(1/2 mũ 2-1)x(1/3 mũ 2 trừ 1)x....x (1/2025 mũ 2 trừ 1)
giúp mình với ak
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{100^2}-1\right)=\frac{-3}{2^2}.\frac{-8}{3^2}...\frac{-9999}{100^2}\)
\(=-\frac{3.8...9999}{2^2.3^2...100^2}=-\frac{1.3.2.4...99.101}{2.2.3.3...100.100}=-\frac{\left(1.2....99\right).\left(3.4...101\right)}{\left(2.3...100\right).\left(2.3...100\right)}=-\frac{1.101}{100.2}=-\frac{101}{200}\)
\(< -\frac{100}{200}=\frac{1}{2}=B\)
=> A < B
\(2^{x+1}-2^x=3^2\)
\(\Rightarrow2^x\cdot\left(2-1\right)=9\)
\(\Rightarrow2^x=9\)
\(\Rightarrow x\in\varnothing\)
\(2^{x+1}-2^x=3^2\)
=>2^x*2-2^x=9
=>2^x=9
=>\(x\in\varnothing\)
ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]
Câu 1 : x2-y2+2yz-z2=-(y2-2yz+z2-x2) Câu 2: x2-2xy+y2-xz+yz=(x2-2xy+y2)-xz+yz
=-(y-z)2 -x2 =(x-y)2-z(x-y)
=-(y-z-x)(y-z+x) =(x-y)(x-y-z)
Cho đa thức
P(x)= x mũ 2 + 2x mũ 2 +1 (1)
Thay P(-1) vào đa thức (1) , ta có :
P= \((-1)^2 +2.(-1) ^3\)
P= \(1+ (-2)\)
P= \(-1\)
Thay P(\(\dfrac{1}{2}\)) vào đa thức (1) , ta có :
\(P= (\dfrac{1}{2})^2 +2.(\dfrac{1}{2})^3\)
\(P= \dfrac{1}{4} + \dfrac{1}{4}\)
\(P=\dfrac{1}{2}\)
Q(x)=x mũ 4 +4x mũ 3 +2x mũ 2 trừ 4x+ 1. (2)
Thay Q(-2) vào đa thức (2) , ta có :
Q =\((-2)^4 +4.(-2)^3 +2.(-2)^2-4(-2)+1\)
\(Q = 16-32+8+8+1\)
\(Q= 1\)
Thay Q(1) vào đa thức (2) , ta có:
\(Q= \) \(1^4+4.1^3+2.1^2-4.1+1\)
\(Q= 1+ 4+2-4+1\)
\(Q= 4\)
Tính P(-1) ; P(1/2) ; Q(-2) ; Q(1)
\(\left(\frac12^2-1\right)\left(\frac13^2-1\right)\ldots\left(\frac{1}{2025}^2-1\right)\)
\(=\left(\frac{1-4}{4}\right)\left(\frac{1-9}{9}\right)\left(\frac{1-16}{16}\right)\ldots\left(\frac{1-2025^2}{2025^2}\right)\)
\(=\frac34\times\frac89\times\frac{15}{16}\times\ldots\times\frac{\left(2024\right)^2-1}{2025^2}\)
\(=\frac{1\times3}{2\times2}\times\frac{2\times4}{3\times3}\times\frac{3\times5}{4\times4}\times\ldots\times\frac{2024\times2026}{2025^{}\times2025}\)
\(=\frac{\left(1\times2\times3\times\ldots\times2024\right)\left(2\times3\times4\times\ldots\times2026\right)}{\left(2\times3\times4\times\ldots\times2025\right)\left(2\times3\times4\times\ldots\times2025\right)}\)
\(=\frac{2026}{2025}\)