ai giải giúp tui với toán 9:giải PT
(x-1)(5x-1)=(x-1)(3x-8)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\frac{6x-2}{8}-\frac{3x-6}{8}-\frac{8}{8}>\frac{20-12x}{8}\)
\(<=>6x-2-3x+6-8>20-12x\)
\(<=>15x>24\)
\(<=>x>\frac{24}{15}\)
2) a)|-2,5x|=x-12
TH1: x>=0 => |-2,5x|=2,5x
2,5x=x-12 <=> x=-8 (loại)
TH2: x<0 => |-2,5x|=-2,5x
-2,5x=x-12 <=> x= 3,42857... (loại)
Vậy không có giá trị x thoả mãn
b) |5x|-3x-2=0
TH1: 5x>=0 => x>=0 => |5x|=5x
5x-3x-2 = 0 <=> x=1 (chọn)
TH2: 5x<0 => x<0 => |5x|=-5x
-5x-3x-2=0 <=> x=-0,25 (chọn)
Vậy x=1 hoặc x=-0,25
c) |-2x|+x-5x-3=0
TH1: -2x>=0 <=> x<=0 <=> |-2x|=-2x
-2x+x-5x-3=0 <=> x=-3 (chọn)
TH2: -2x<0 <=> x>0 <=> |-2x|=2x
2x+x-5x-3=0 <=> x=-1,5 (loại)
Vậy x=-3
3) a) Ta có: -x2+4x-4=-(x-2)2<=0
=> -x2+4x-4-5<=-5
=> -x2+4x-9<=-5
b) Ta có: x2-2x+1=(x-1)2>=0
=> x2-2x+1+8>=8
=> x2-2x+9>=8
Bài 2 :
|-2/5x| = x - 12
2/5x = x - 12
2/5x - x = -12
=> -3/5x = -12
=> x =-12 : -3/5
=>x= 20
(x - 1)(5x + 3) = (3x - 8)(x - 1)
<=> (x - 1)(5x + 3) - (3x - 8)(x - 1)= 0
<=> (x - 1)(5x + 3 - 3x + 8) = 0
<=> (x - 1)(2x + 11) = 0
\(\Leftrightarrow \begin{bmatrix} x - 1 = 0 & & \\ 2x + 11 = 0 & & \end{bmatrix}\)pn bỏ dấu ngoặc bên phải nha
\(\Leftrightarrow \begin{bmatrix} x = 1 & & \\ x = \frac{-11}{2} & & \end{bmatrix}\)
Vậy ............
\(\left(x-1\right)\left(5x+3\right)=\left(3x-8\right)\left(x-1\right)\)
\(\Rightarrow\left(x-1\right)\left(5x+3\right)-\left(3x-8\right)\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(5x+3-3x+8\right)=0\)
\(\Rightarrow\left(x-1\right)\left(2x+11\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\2x+11=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{11}{2}\end{matrix}\right.\)
Chúc bạn học tốt!
làm ra thì dài quá mk ko còn nhiều t/g
bn Áp dụng HĐT a2-b2=(a+b)(a-b) đi
Đ/a: a)x1=2;x2=6;x3,4=\(\frac{-2\pm\sqrt{452}}{14}\)
b)x1=-1;x2=1/2;x3,4=\(\frac{-2\pm\sqrt{8}}{2}\)
c)x=-5/4;x=1/2
a, 3x - 7 = 0
<=> 3x = 7
<=> x = 7/3
b, 8 - 5x = 0
<=> -5x = -8
<=> x = 8/5
c, 3x - 2 = 5x + 8
<=> -2x = 10
<=> x = -5
e) Ta có: \(\left(5x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=-1\\x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=3\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{1}{5};3\right\}\)
1.a)|−7x|=3x+16
Vì |-7x| ≥ 0 nên 3x+16 ≥ 0 ⇔ x ≥ \(\dfrac{-16}{3}\) (*)
Với đk (*), ta có: |-7x|=3x+16
\(\left[\begin{array}{} -7x=3x+16\\ -7x=-3x-16 \end{array} \right.\) ⇔ \(\left[\begin{array}{} -7x-3x=16\\ -7x+3x=-16 \end{array} \right.\)
⇔ \(\left[\begin{array}{} x=-1,6 (t/m)\\ x= 4 (t/m) \end{array} \right.\)
b) \(\dfrac{x-1}{x+2}\) - \(\dfrac{x}{x-2}\) = \(\dfrac{5x-8}{x^2-4}\)
⇔ \(\dfrac{(x-1)(x-2)}{x^2-4}\) - \(\dfrac{x(x+2)}{x^2-4}\) = \(\dfrac{5x-8}{x^2-4}\)
⇒ x2 - 2x - x + 2 - x2 - 2x = 5x - 8
⇔ -5x - 5x = -8 - 2
⇔ -10x = -10
⇔ x=1
2.7x+5 < 3x−11
⇔ 7x - 3x < -11 - 5
⇔ 4x < -16
⇔ x < -4
bạn tự biểu diễn trên trục số nha !
a, ĐK: \(\left(x+1\right)\left(x^2+2x-1\right)\ge0\)
\(x^2+5x+2=4\sqrt{x^3+3x^2+x-1}\)
\(\Leftrightarrow x^2+2x-1+3\left(x+1\right)-4\sqrt{\left(x+1\right)\left(x^2+2x-1\right)}=0\)
TH1: \(x\ge-1\)
\(pt\Leftrightarrow\left(\sqrt{x^2+2x-1}-\sqrt{x+1}\right)\left(\sqrt{x^2+2x-1}-3\sqrt{x+1}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-1}=\sqrt{x+1}\\\sqrt{x^2+2x-1}=3\sqrt{x+1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-1=x+1\\x^2+2x-1=9x+9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\x^2-7x-10=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
TH2: \(x< -1\)
\(pt\Leftrightarrow\left(\sqrt{-x^2-2x+1}-\sqrt{-x-1}\right)\left(\sqrt{-x^2-2x+1}-3\sqrt{-x-1}\right)=0\)
\(\Leftrightarrow...\)
Bài này dài nên ... cho nhanh nha, đoạn sau dễ rồi
a) Ta có: \(|-5x|-16=3x\)
Đk: \(3x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\orbr{\begin{cases}-5x-16=3x\\5x-16=3x\end{cases}}\Rightarrow\orbr{\begin{cases}-5x-3x=16\\5x-3x=16\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}-8x=16\\-2x=16\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=8\end{cases}}}\)
Mà x \(\ge0\)\(\Rightarrow x=8\)
b) \(|3x-2|=1-x\)
\(\Rightarrow\orbr{\begin{cases}3x-2=1-x\\3x-2=-1+x\end{cases}\Rightarrow}\orbr{\begin{cases}3x+x=1+2\\3x-x=-1+2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}4x=3\\2x=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=\frac{1}{2}\end{cases}}\)
Vậy: x = \(\frac{3}{4}\)hoặc x\(=\frac{1}{2}\)
c) Ta có: \(|-2x|=4x-10\)
Đk: \(4x-10\ge0\Rightarrow4x\ge10\Rightarrow x\ge\frac{5}{2}\)
\(\Rightarrow\orbr{\begin{cases}-2x=4x-10\\2x=4x-10\end{cases}}\Rightarrow\orbr{\begin{cases}-2x-4x=-10\\2x-4x=-10\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}-6x=-10\\-2x=-10\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=5\end{cases}}\)
mà x\(\ge\frac{5}{2}\)\(\Rightarrow x=5\)
1) 3x - 6= 5x + 2
5x - 3x = -6 - 2
2x = -8
x = -4
2) 15 - x = 4x - 5
4x + x = 15 + 5
5x = 20
x = 4
Tương tự như trên
Ta có: (x-1)(5x-1)=(x-1)(3x-8)
=>(x-1)(5x-1)-(x-1)(3x-8)=0
=>(x-1)(5x-1-3x+8)=0
=>(x-1)(2x+7)=0
=>\(\left[{}\begin{matrix}x-1=0\\2x+7=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=1\\x=-\dfrac{7}{2}\end{matrix}\right.\)
NHỚ TÍCH CHO MÌNH NHA ^^.
Để giải phương trình \(\left(\right. x - 1 \left.\right) \left(\right. 5 x - 1 \left.\right) = \left(\right. x - 1 \left.\right) \left(\right. 3 x - 8 \left.\right)\), ta sẽ làm theo các bước sau:
Nhận thấy bên trái và bên phải đều có \(\left(\right. x - 1 \left.\right)\), nếu \(x \neq 1\), ta có thể chia cả hai vế cho \(\left(\right. x - 1 \left.\right)\). Tuy nhiên, phải kiểm tra trường hợp \(x = 1\) riêng biệt vì nếu chia cho \(\left(\right. x - 1 \left.\right)\), ta sẽ mất nghiệm này.
\(\text{N} \overset{ˊ}{\hat{\text{e}}} \text{u}\&\text{nbsp}; x \neq 1 , \text{Ph}ưo\text{ng}\&\text{nbsp};\text{tr} \overset{ˋ}{\imath} \text{nh}\&\text{nbsp};\text{tr}ở\&\text{nbsp};\text{th} \overset{ˋ}{\text{a}} \text{nh}:\) \(5 x - 1 = 3 x - 8\)
\(5 x - 1 = 3 x - 8\)
\(5 x - 3 x = - 8 + 1\) \(2 x = - 7\)
\(x = \frac{- 7}{2}\)
Khi \(x = 1\), ta thay vào phương trình gốc:
\(\left(\right. 1 - 1 \left.\right) \left(\right. 5 \left(\right. 1 \left.\right) - 1 \left.\right) = \left(\right. 1 - 1 \left.\right) \left(\right. 3 \left(\right. 1 \left.\right) - 8 \left.\right)\) \(0 = 0\)
Đây là một đẳng thức đúng, vì vậy \(x = 1\) là một nghiệm.
Kết luận:
Phương trình có hai nghiệm: \(x = 1\) và \(x = - \frac{7}{2}\).