K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2017
  • Hai đại lượng gọi tỉ lệ thuận. Nếu giá trị của đại lượng này tăng (hoặc giảm) bao nhiêu lần thì giá trị của đại lượng kia cũng tăng (hoặc giảm) bấy nhiêu lần.
  • Hai đại lượng gọi tỉ lệ nghịch. Nếu giá trị của đại lượng này tăng (hoặc giảm) bao nhiêu lần thì giá trị của đại lượng kia cũng giảm (hoặc tăng ) bấy nhiêu lần.

3 tháng 12 2019

Có: y tỉ lệ nghịch với x theo hệ số tỉ lệ a => \(y=\frac{a}{x}\)  \(\left(a\ne0\right)\)

        x tỉ lệ thuận vs z theo hệ số tỉ lệ k => \(x=k.z\)   \(\left(k\ne0\right)\)

\(\Rightarrow y=\frac{a}{k.z}\Rightarrow y.z=\frac{a}{k}\)

Vậy y tỉ lệ nghịch với z theo hệ số \(\frac{a}{k}\)

8 tháng 12 2016

cau C

NHO K CHO MINH NHA

21 tháng 11 2017

c)nha

18 tháng 2 2023

a) Giả sử y tỉ lệ thuận với x theo hệ số tỉ lệ a nên \(y=a.x\) nên \(x=\dfrac{y}{a}\)

                y tỉ lệ thuận với z theo hệ số tỉ lệ b nên \(y=b.z\)

Do đó, \(x=\dfrac{y}{a}=\dfrac{b.z}{a}=\dfrac{b}{a}.z\left(\dfrac{b}{a}\text{là hằng số vì a,b là các hằng số}\right)\)

Vậy x tỉ lệ thuận với z và hệ số tỉ lệ là \(\dfrac{b}{a}\)

b) Giả sử y tỉ lệ thuận với x theo hệ số tỉ lệ a nên y = a.x nên \(x=\dfrac{y}{a}\)

y tỉ lệ nghịch với z theo hệ số tỉ lệ b nên \(y=\dfrac{b}{z}\)

Do đó: \(x=\dfrac{y}{a}=\dfrac{\dfrac{b}{z}}{a}=\dfrac{b}{z}:a=\dfrac{b}{z}.\dfrac{1}{a}=\dfrac{\dfrac{b}{a}}{z}\left(\dfrac{b}{a}\text{là hằng số vì a,b là các hằng số}\right)\)

Vậy x tỉ lệ nghịch với z và hệ số tỉ lệ là \(\dfrac{b}{a}\)

c) Giả sử y tỉ lệ nghịch với x theo hệ số tỉ lệ a nên \(y=\dfrac{a}{x}\)  nên \(x=\dfrac{a}{y}\)

y tỉ lệ nghịch với z theo hệ số tỉ lệ b nên \(y=\dfrac{b}{z}\)

Do đó: \(x=\dfrac{a}{y}=\dfrac{a}{\dfrac{b}{z}}=a:\dfrac{b}{z}=a.\dfrac{z}{b}=\dfrac{a}{b}.z\left(\dfrac{a}{b}\text{ là hằng số vì a,b là các hằng số}\right)\)

Vậy x tỉ lệ thuận với z và hệ số tỉ lệ là \(\dfrac{a}{b}\)

 
8 tháng 3 2023

thank bn

`@` `\text {dnammv}`

Ta có:

`x` và `y` tỉ lệ nghịch với nhau theo hệ số tỉ lệ `5`

`-> x=5/y` `(1)`

`y` và `z` tỉ lệ nghịch với nhau theo hệ số tỉ lệ `3`

`-> y=3/z` `(2)`

Từ `(1)` và `(2)`

`-> x=5/(3/z)`

`x=5*z/3 = 5/3*z`

Vậy, `x` tỉ lệ thuận với `z` theo hệ số tỉ lệ `5/3.`

x và y tỉ lệ nghịch theo hệ số tỉ lệ 5 nên y=5/x

y và z tỉ lệ nghịch theo hệ số tỉ lệ 3 nên y=3/z

=>5/x=3/z

=>3x=5z

=>x=5/3z

=>x và z tỉ lệ thuận theo hệ số tỉ lệ 5/3

11 tháng 11 2018

chưa học 

29 tháng 7 2019

mình chưa học bạn à . Xin lỗi bạn nhé vì ko giải được cho bạn

18 tháng 12 2016

Đại lượng y và x tỉ lệ thuận với nhau nếu đại lượng y liên hệ với đại lượng x theo công thức y = k.x ( với k là hằng số khác 0) thì ta nói y tỉ lệ thuận với x theo hệ số tỉ lệ k. Khi y tỉ lệ thuận với x theo hệ số tỉ lệ k thì x tỉ lệ thuận với y theo hệ số tỉ lệ là 1,k. Và ta nói y,x tỉ lệ thuận với nhau

VD: vì x,y là tỉ lệ thuận nên k = 6 : (-2) = 3

 

20 tháng 12 2016

- Nếu đại lượng y liên hệ với đại lượng x theo công thức y=\(\frac{a}{x}\) hay a= x.y (a là 1 hằng số khác hk) thì ta nói y tỉ lệ nghịch vs x theo hệ số tỉ lệ a.

VD: 2 tỉ lệ nghịch vs 3 theo hệ số tỉ lệ a.

=> a = 2.3=6

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) Giả sử y tỉ lệ thuận với x theo hệ số tỉ lệ a nên y = a.x nên \(x = \dfrac{y}{a}\)

                y tỉ lệ thuận với z theo hệ số tỉ lệ b nên y = b.z

Do đó, \(x = \dfrac{y}{a} = \dfrac{{b.z}}{a} = \dfrac{b}{a}.z\)( \(\dfrac{b}{a}\) là hằng số vì a,b là các hằng số)

Vậy x tỉ lệ thuận với z và hệ số tỉ lệ là \(\dfrac{b}{a}\)

b) Giả sử y tỉ lệ thuận với x theo hệ số tỉ lệ a nên y = a.x nên \(x = \dfrac{y}{a}\)

                y tỉ lệ nghịch với z theo hệ số tỉ lệ b nên y = \(\dfrac{b}{z}\)

Do đó, \(x = \dfrac{y}{a} = \dfrac{{\dfrac{b}{z}}}{a} = \dfrac{b}{z}:a = \dfrac{b}{z}.\dfrac{1}{a} = \dfrac{{\dfrac{b}{a}}}{z}\)( \(\dfrac{b}{a}\) là hằng số vì a,b là các hằng số)

Vậy x tỉ lệ nghịch với z và hệ số tỉ lệ là \(\dfrac{b}{a}\)

c) Giả sử y tỉ lệ nghịch với x theo hệ số tỉ lệ a nên y = \(\dfrac{a}{x}\) nên x = \(\dfrac{a}{y}\)

              y tỉ lệ nghịch với z theo hệ số tỉ lệ b nên y = \(\dfrac{b}{z}\)

Do đó, \(x = \dfrac{a}{y} = \dfrac{a}{{\dfrac{b}{z}}} = a:\dfrac{b}{z} = a.\dfrac{z}{b} = \dfrac{a}{b}.z\)( \(\dfrac{a}{b}\) là hằng số vì a,b là các hằng số)

Vậy x tỉ lệ thuận với z và hệ số tỉ lệ là \(\dfrac{a}{b}\)