So sánh hai đại lượng tỉ lệ thuận và tỉ lệ nghịch .
Giup mk vs nha nhanh nhất có thể của m.n . Mơn nhiều !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: y tỉ lệ nghịch với x theo hệ số tỉ lệ a => \(y=\frac{a}{x}\) \(\left(a\ne0\right)\)
x tỉ lệ thuận vs z theo hệ số tỉ lệ k => \(x=k.z\) \(\left(k\ne0\right)\)
\(\Rightarrow y=\frac{a}{k.z}\Rightarrow y.z=\frac{a}{k}\)
Vậy y tỉ lệ nghịch với z theo hệ số \(\frac{a}{k}\)
a) Giả sử y tỉ lệ thuận với x theo hệ số tỉ lệ a nên \(y=a.x\) nên \(x=\dfrac{y}{a}\)
y tỉ lệ thuận với z theo hệ số tỉ lệ b nên \(y=b.z\)
Do đó, \(x=\dfrac{y}{a}=\dfrac{b.z}{a}=\dfrac{b}{a}.z\left(\dfrac{b}{a}\text{là hằng số vì a,b là các hằng số}\right)\)
Vậy x tỉ lệ thuận với z và hệ số tỉ lệ là \(\dfrac{b}{a}\)
b) Giả sử y tỉ lệ thuận với x theo hệ số tỉ lệ a nên y = a.x nên \(x=\dfrac{y}{a}\)
y tỉ lệ nghịch với z theo hệ số tỉ lệ b nên \(y=\dfrac{b}{z}\)
Do đó: \(x=\dfrac{y}{a}=\dfrac{\dfrac{b}{z}}{a}=\dfrac{b}{z}:a=\dfrac{b}{z}.\dfrac{1}{a}=\dfrac{\dfrac{b}{a}}{z}\left(\dfrac{b}{a}\text{là hằng số vì a,b là các hằng số}\right)\)
Vậy x tỉ lệ nghịch với z và hệ số tỉ lệ là \(\dfrac{b}{a}\)
c) Giả sử y tỉ lệ nghịch với x theo hệ số tỉ lệ a nên \(y=\dfrac{a}{x}\) nên \(x=\dfrac{a}{y}\)
y tỉ lệ nghịch với z theo hệ số tỉ lệ b nên \(y=\dfrac{b}{z}\)
Do đó: \(x=\dfrac{a}{y}=\dfrac{a}{\dfrac{b}{z}}=a:\dfrac{b}{z}=a.\dfrac{z}{b}=\dfrac{a}{b}.z\left(\dfrac{a}{b}\text{ là hằng số vì a,b là các hằng số}\right)\)
Vậy x tỉ lệ thuận với z và hệ số tỉ lệ là \(\dfrac{a}{b}\)
`@` `\text {dnammv}`
Ta có:
`x` và `y` tỉ lệ nghịch với nhau theo hệ số tỉ lệ `5`
`-> x=5/y` `(1)`
`y` và `z` tỉ lệ nghịch với nhau theo hệ số tỉ lệ `3`
`-> y=3/z` `(2)`
Từ `(1)` và `(2)`
`-> x=5/(3/z)`
`x=5*z/3 = 5/3*z`
Vậy, `x` tỉ lệ thuận với `z` theo hệ số tỉ lệ `5/3.`
x và y tỉ lệ nghịch theo hệ số tỉ lệ 5 nên y=5/x
y và z tỉ lệ nghịch theo hệ số tỉ lệ 3 nên y=3/z
=>5/x=3/z
=>3x=5z
=>x=5/3z
=>x và z tỉ lệ thuận theo hệ số tỉ lệ 5/3
mình chưa học bạn à . Xin lỗi bạn nhé vì ko giải được cho bạn
Đại lượng y và x tỉ lệ thuận với nhau nếu đại lượng y liên hệ với đại lượng x theo công thức y = k.x ( với k là hằng số khác 0) thì ta nói y tỉ lệ thuận với x theo hệ số tỉ lệ k. Khi y tỉ lệ thuận với x theo hệ số tỉ lệ k thì x tỉ lệ thuận với y theo hệ số tỉ lệ là 1,k. Và ta nói y,x tỉ lệ thuận với nhau
VD: vì x,y là tỉ lệ thuận nên k = 6 : (-2) = 3
- Nếu đại lượng y liên hệ với đại lượng x theo công thức y=\(\frac{a}{x}\) hay a= x.y (a là 1 hằng số khác hk) thì ta nói y tỉ lệ nghịch vs x theo hệ số tỉ lệ a.
VD: 2 tỉ lệ nghịch vs 3 theo hệ số tỉ lệ a.
=> a = 2.3=6
a) Giả sử y tỉ lệ thuận với x theo hệ số tỉ lệ a nên y = a.x nên \(x = \dfrac{y}{a}\)
y tỉ lệ thuận với z theo hệ số tỉ lệ b nên y = b.z
Do đó, \(x = \dfrac{y}{a} = \dfrac{{b.z}}{a} = \dfrac{b}{a}.z\)( \(\dfrac{b}{a}\) là hằng số vì a,b là các hằng số)
Vậy x tỉ lệ thuận với z và hệ số tỉ lệ là \(\dfrac{b}{a}\)
b) Giả sử y tỉ lệ thuận với x theo hệ số tỉ lệ a nên y = a.x nên \(x = \dfrac{y}{a}\)
y tỉ lệ nghịch với z theo hệ số tỉ lệ b nên y = \(\dfrac{b}{z}\)
Do đó, \(x = \dfrac{y}{a} = \dfrac{{\dfrac{b}{z}}}{a} = \dfrac{b}{z}:a = \dfrac{b}{z}.\dfrac{1}{a} = \dfrac{{\dfrac{b}{a}}}{z}\)( \(\dfrac{b}{a}\) là hằng số vì a,b là các hằng số)
Vậy x tỉ lệ nghịch với z và hệ số tỉ lệ là \(\dfrac{b}{a}\)
c) Giả sử y tỉ lệ nghịch với x theo hệ số tỉ lệ a nên y = \(\dfrac{a}{x}\) nên x = \(\dfrac{a}{y}\)
y tỉ lệ nghịch với z theo hệ số tỉ lệ b nên y = \(\dfrac{b}{z}\)
Do đó, \(x = \dfrac{a}{y} = \dfrac{a}{{\dfrac{b}{z}}} = a:\dfrac{b}{z} = a.\dfrac{z}{b} = \dfrac{a}{b}.z\)( \(\dfrac{a}{b}\) là hằng số vì a,b là các hằng số)
Vậy x tỉ lệ thuận với z và hệ số tỉ lệ là \(\dfrac{a}{b}\)
Hai đại lượng gọi tỉ lệ nghịch. Nếu giá trị của đại lượng này tăng (hoặc giảm) bao nhiêu lần thì giá trị của đại lượng kia cũng giảm (hoặc tăng ) bấy nhiêu lần.