K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 giờ trước (7:47)

A = \(-\frac{3}{2.5}\) + \(\frac{-3}{5.8}\) + \(-\frac{3}{8.11}\) + ....+ \(-\frac{3}{97.100}\)

A = - (\(\frac{3}{2.5}\) + \(\frac{3}{5.8}\) + \(\frac{3}{8.11}\) + ... + \(\frac{3}{97.100}\))

A = - (\(\frac12-\frac15\) + \(\frac18\) - \(\frac{1}{11}\) + ...+ \(\frac{1}{97}-\frac{1}{100}\))

A = - \(\frac12\) + \(\frac{1}{100}\)

A = \(-\frac{49}{100}\)

14 giờ trước (8:23)

loading...

loading... loading...

loading...

loading...

loading...

26 tháng 4 2017

Đề hình như bị sai ban ơi sửa lại

\(A=\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{92.95}\)

\(A=3\left(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{92.95}\right)\)

\(A=3.\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{92}-\dfrac{1}{95}\right)\)

\(A=\dfrac{1}{2}-\dfrac{1}{95}\)

\(A=\dfrac{93}{190}\)

\(B=\dfrac{2}{2.5}+\dfrac{2}{5.8}+\dfrac{2}{8.11}+...+\dfrac{2}{92.95}\)

\(3B=2\left(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{92.95}\right)\)

\(3B=2.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{92}-\dfrac{1}{95}\right)\)

\(3B=2\left(\dfrac{1}{2}-\dfrac{1}{95}\right)\)

\(3B=2.\dfrac{93}{190}\)

\(3B=\dfrac{93}{95}\)

\(\Rightarrow B=\dfrac{31}{95}\)

15 tháng 8 2016

\(S=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{98.101}\)

\(S=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{98}-\frac{1}{101}\)

\(S=\frac{1}{2}-\frac{1}{101}\)

\(S=\frac{99}{202}\)

15 tháng 8 2016

sai thì phải tử 3 sau tách ra thành tử 1

19 tháng 3 2017

3/2.5 + ...+ 3/17 .20

= 3/2 .(1/2 - 1/5 + 1/5 - 1/8 + ... + 1/17 - 120)

= 3/2 . (1/2 - 1/20)

\(\frac{3}{2}\) . \(\frac{9}{20}\) = \(\frac{27}{40}\)

19 tháng 3 2017

P= 3/ 2.5 + 3/5.8 + 3/8.11 + .... + 3/17.20

P= 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + .... + 1 /17 - 1/20

P= 1 / 2 - 1 / 20

P = 9/20

6 tháng 8 2023

\(A=\dfrac{1}{3}\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{92.95}+\dfrac{3}{95.98}\right)\\ A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{92}-\dfrac{1}{95}+\dfrac{1}{95}-\dfrac{1}{98}\right)\\ A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{98}\right)\\ A=\dfrac{1}{3}.\dfrac{24}{49}=\dfrac{8}{49}\)

6 tháng 8 2023

\(A=\dfrac{1}{3}\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+..+\dfrac{3}{92.95}+\dfrac{3}{95.98}\right)\)

\(A=\dfrac{3}{2.5.3}+\dfrac{3}{5.8.3}+\dfrac{3}{8.11.3}+..+\dfrac{3}{92.95.3}+\dfrac{3}{95.98.3}\)

\(A=\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+..+\dfrac{1}{92.95}+\dfrac{1}{95.98}\)

\(A=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+..+\dfrac{1}{92}-\dfrac{1}{95}+\dfrac{1}{95}-\dfrac{1}{98}\)

\(A=\dfrac{1}{2}-\dfrac{1}{98}=\dfrac{49}{98}-\dfrac{1}{98}=\dfrac{48}{98}=\dfrac{24}{49}\)

=1/2-1/5+1/5-1/8+1/8-1/11+1/11-1/14

=1/2-1/14

=7/14-1/14=6/14=3/7

5 tháng 8 2021

Chịu r

18 tháng 7 2017

Đặt \(A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}\)

\(A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)

\(A=\frac{1}{2}-\frac{1}{17}\)

\(A=\frac{15}{34}\)

18 tháng 7 2017

\(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)\(\frac{1}{2}-\frac{1}{17}\)=\(\frac{15}{34}\)

7 tháng 5 2021

S= 23/2.5+23/5.8+....................+23/53.56

S=8/2.5+8/5.8+8/8.11+.......+8/53.56

S=8/3.(3/2.5+3/5.8+3/8.11+...........+3/53.56)

S=8/3.(1/2-1/5+1/5-1/8+1/8-...........+1/53-1/56)

S=8/3.(1/2-1/56)

S=8/3.27/56

S=9/7

nhớ t ick cho mình nha

4 tháng 8 2020

\(A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{2015.2018}\)

\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{2015}-\frac{1}{2018}\)

\(=\frac{1}{2}-\frac{1}{2018}=\frac{504}{1009}\)

Vậy \(A=\frac{504}{1009}.\)

\(B=\frac{4}{2.6}+\frac{4}{6.10}+\frac{4}{10.14}+...+\frac{4}{102.106}\)

\(=\frac{1}{2}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+...+\frac{1}{102}-\frac{1}{106}\)

\(=\frac{1}{2}-\frac{1}{106}=\frac{26}{53}\)

Vậy \(B=\frac{26}{53}.\)

4 tháng 8 2020

Bài làm:

a) \(A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{2015.2018}\)

\(A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{2015}-\frac{1}{2018}\)

\(A=\frac{1}{2}-\frac{1}{2018}\)

\(A=\frac{504}{1009}\)

b) \(B=\frac{4}{2.6}+\frac{4}{6.10}+\frac{4}{10.14}+...+\frac{4}{102.106}\)

\(B=\frac{1}{2}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+...+\frac{1}{102}-\frac{1}{106}\)

\(B=\frac{1}{2}-\frac{1}{106}\)

\(B=\frac{26}{53}\)