Cho tam giác ABC cos AB=AC, M là trung điểm của đoạn thẳng AB , Lấy điểm D sao cho B là B là trung ddiemr của đoạn thẳng AD .CMR : CM=1/2CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC, M là trung điểm của BC. Trên nửa mp bờ AB ko chứa C vẽ đoạn thẳng AD vuông góc AB và AD=AB. Trên nửa mp bờ AC ko chứa B, vẽ đoạn thẳng AE vuông góc AC và AE=AC. Trên tia AM ta lấy điểm F sao cho M là trung điểm của À.
a) CMR: tam giác MAC= tam giác MBF => AC = BF
b) CMR: tam giác ADE = tam giác BAF
c) CM AM vuông góc DE
d) Từ A, vẽ đường thẳng vuông góc với BC cắt BC tại H, cắt DE tại K. CMR: K là trung điểm của DE
bn hãy vận dụng hết các kiến thức đã học
Nhớ lại các bài giảng của thầy cô giáo
Tìm các mối quan hệ giữa cái này và cái kia
sau đó =>............
a) DE = 2cm.
b) D là trung điểm của đoạn thẳng AE vì AD = DE = 2cm.
c) Đoạn thẳng BD là cạnh, của các tam giác: BDA, BDE,BDC.
a/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
BM = DM (gt)
=> \(\Delta ABM\)= \(\Delta CDM\)(c. g. c)
b) Ta có \(\Delta ABM\)= \(\Delta CDM\)(cm câu a) => \(\widehat{BAC}=\widehat{ACD}\)(hai góc tương ứng bằng nhau ở vị trí so le trong)
=> AB // CD (đpcm)