K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2018

A B C O M N K E F P Q I J

a) Xét \(\Delta\)AMC: OQ//AC (O\(\in\)AM; Q\(\in\)MC) => \(\frac{OM}{AM}=\frac{MQ}{MC}\)(1)

Tương tự, ta có: \(\frac{OM}{AM}=\frac{MJ}{BM}\)(2)

Từ (1) và (2) => \(\frac{OM}{AM}=\frac{MQ+MJ}{BM+MC}=\frac{JQ}{BC}\)(Tính chất dãy tỉ số bằng nhau)

Xét \(\Delta\)BNC: OQ//NC (O\(\in\)BN; Q\(\in\)BC) => \(\frac{ON}{BN}=\frac{QC}{BC}\)

Tương tự: \(\frac{OK}{CK}=\frac{BJ}{BC}\)

Vây \(\frac{OM}{AM}+\frac{ON}{BN}+\frac{OK}{CK}=\frac{JQ}{BC}+\frac{QC}{BC}+\frac{BJ}{BC}=\frac{BC}{BC}=1\)(đpcm).

b) Đề sai thì phải, theo mình nên sửa \(\frac{IJ}{AC}\)thành \(\frac{IJ}{AB}\)

Ta có: \(\frac{PQ}{AC}=\frac{BQ}{BC}\) và  \(\frac{IJ}{AB}=\frac{CJ}{BC}\)(Hệ quả ĐL Thales)

\(\frac{EF}{BC}=\frac{OE}{BC}+\frac{OF}{BC}\)

Lại có: \(\frac{OE}{BC}=\frac{OK}{KC}=\frac{BJ}{BC}\)\(\frac{OF}{BC}=\frac{ON}{BN}=\frac{QC}{BC}\)

\(\Rightarrow\frac{EF}{BC}=\frac{BJ+QC}{BC}\)

\(\Rightarrow\frac{EF}{BC}+\frac{PQ}{AC}+\frac{IJ}{AB}=\frac{BJ+QC+BQ+CJ}{BC}=\frac{BJ+JQ+CJ+JQ+BJ+CJ}{BC}\)

\(=\frac{2BJ+2JQ+2CJ}{BC}=\frac{2.\left(BJ+JQ+CJ\right)}{BC}=\frac{2BC}{BC}=2\)

Vậy: \(\frac{EF}{BC}+\frac{PQ}{AC}+\frac{IJ}{AB}=2\)(đpcm).

a: Xét tứ giác AEHF có

góc AEH=góc AFH=góc FAE=90 độ

nên AEHF là hình chữ nhật

=>AH=EF

b: góc IFE=90 độ

=>góc IFH+góc EFH=90 độ

=>góc IFH+góc AHF=90 độ

=>góc IFH=góc IHF

=>IH=IF và góc IFC=góc ICF

=>IH=IC

=>I là trung điểm của HC

Xét ΔHAC có HO/HA=HI/HC

nên OI//AC và OI=AC/2

=>OI//AK và OI=AK

=>AOIK là hình bình hành

23 tháng 5 2017

 

Vì DPN+DQN=90o+90o=180o nên DPNQ là tứ giác nội tiếp

=>QPN=QDN (hai góc nội tiếp cùng chắn cung QN) (5)

Mặt khác DENF là tứ giác nội tiếp nên QDN=FEN  (6)

Từ (5) và (6) ta có FEN=QPN (7)

Tương tự ta có: EFN=PQN  (8)

Từ (7) và (8) suy ra  Δ N P Q ~ Δ N E F ( g . g ) = > P Q E F = N Q N F

Theo quan hệ đường vuông góc – đường xiên, ta có

N Q ≤ N F = > P Q E F = N Q N F ≤ 1 = > P Q ≤ E F

Dấu bằng xảy ra khi Q ≡ F NF DF D, O, N thẳng hàng.

Do đó PQ max khi M là giao điểm của AC và BN, với N là điểm đối xứng với D qua O.

24 tháng 1 2016

kho

24 tháng 1 2016

bucminh  chịu chịu chịu

a: HM là đường trung bình của ΔEBC

=>EH=HB

KM là đường trug bình của ΔFBC

=>FK=KC

ΔAHM có EO//HM

=>AE/AH=AO/AM

ΔAKM có KM//FO

nên AF/AK=AO/AM

=>AE/AH=AF/AK

=>EF//HK

b: ΔAHM có EO//HM

=>MA/MO=HA/HE

=>MA/MO=HA/HB

ΔAKM có FO//KM

=>MA/MO=KA/KF=KA/KC

=>HA/HB=KA/KC

=>HK//BC

=>EF//BC

18 tháng 9 2021

\(a,\left\{{}\begin{matrix}BE=CF\left(GT\right)\\AB=AC\left(GT\right)\end{matrix}\right.\Rightarrow\dfrac{BE}{AB}=\dfrac{CF}{AC}\Rightarrow EF//BC\left(Ta-lét.đảo\right)\\ \Rightarrow AH\perp EF.tại.O\left(1\right)\)

Tam giác ABC cân tại A có AH là đường cao cũng là trung tuyến 

Áp dụng hệ quả Ta-lét: \(\left\{{}\begin{matrix}\dfrac{EO}{BH}=\dfrac{AO}{AH}\\\dfrac{AO}{AH}=\dfrac{OF}{HC}\end{matrix}\right.\Rightarrow\dfrac{EO}{BH}=\dfrac{OF}{HC}\)

Mà \(BH=HC\left(AH.trung.tuyến\right)\Rightarrow EO=OF\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\) E đối xứng F qua AH

\(b,\Delta BOC\) có \(OH\) vừa là đường cao vừa là trung tuyên nên là tam giác cân

\(\Rightarrow OB=OC;\widehat{OBC}=\widehat{OCB}\\ \Rightarrow\widehat{ABC}-\widehat{OBC}=\widehat{ACB}-\widehat{OCB}\left(\Delta ABC.cân.tại.A\right)\\ \Rightarrow\widehat{KBO}=\widehat{ICO}\)

\(\left\{{}\begin{matrix}OB=OC\left(cm.trên\right)\\\widehat{KBO}=\widehat{ICO}\left(cm.trên\right)\\\widehat{KOB}=\widehat{IOC}\left(đối.đỉnh\right)\end{matrix}\right.\Rightarrow\Delta BOK=\Delta COI\left(g.c.g\right)\\ \Rightarrow BK=CI\\ \Rightarrow BK-BE=CI-CF\left(BK=CF.do.giả.thiết\right)\\ \Rightarrow EK=FI\)

 

22 tháng 11 2023

loading...  loading...