K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

\(\widehat{DAB}\) chung

Do đó: ΔADB=ΔAEC

=>BD=CE

b: ΔABD=ΔACE

=>\(\widehat{ABD}=\widehat{ACE}\) và AD=AE
Ta có: AD+DC=AC

AE+EB=AB

mà AD=AE và AC=AB

nên DC=EB

Xét ΔOEB vuông tại E và ΔODC vuông tại D có

EB=DC
\(\widehat{OBE}=\widehat{OCD}\)

Do đó: ΔOEB=ΔODC
c: ΔOEB=ΔODC

=>OB=OC

Xét ΔAOB và ΔAOC có

AO chung

OB=OC

AB=AC

Do đó: ΔAOB=ΔAOC

=>\(\widehat{OAB}=\widehat{OAC}\)

=>AO là phân giác của góc BAC

d: Ta có: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Ta có: HB=HC

=>H nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,O,H thẳng hàng

3 tháng 4 2020

Hình tự vẽ nha!
Xét tam giác ABC có : \(\widehat{A}\)\(=180\)\(-(\widehat{B}\)\(+\widehat{C}\)\()\)
Xét tam giác BOC có : \(\widehat{OBC}\)\(+\widehat{OCB}\)\(=180-\widehat{BOC}\)\(\Rightarrow\widehat{OBC}\)\(+\widehat{OCB}\)=\(180-130\)\(\Rightarrow\widehat{OBC}\)\(+\widehat{OCB}\)\(=50\)
Vì OC là tia phân giác của \(\widehat{C}\)\(\Rightarrow\widehat{OCB}\)\(=\widehat{OCA}\)\(=\frac{1}{2}\)\(\widehat{C}\)
Vì OB là tia phân giác của \(\widehat{B}\)\(\Rightarrow\widehat{OBC}\)\(=\widehat{OBA}\)\(=\frac{1}{2}\)\(\widehat{B}\)
\(\Rightarrow\frac{1}{2}\)\((\widehat{B}\)\(+\widehat{C}\)\()\)\(=\widehat{OBC}\)\(+\widehat{OCB}\)\(=50\)\(\Rightarrow\widehat{B}\)\(+\widehat{C}\)\(=50.2=100\)\(\Rightarrow\widehat{A}\)\(=180-100\)\(=80\)
Mình không viết độ được mong bạn thông cảm!
Chúc bạn học tốt!

 

13 tháng 12 2017

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

=>góc BAH=góc CAH

=>AH là phân giác của góc BAC

b: C ABC=10+10+12=32

Cho tam giác ABC có góc A=80 độ:B=60 độa) Trên BC lấy điểm M sao cho BM=BA. Tia phân giác góc B cắt AC tại D. Chứng minh: tam giác BAD= tam giác BMDb)Tia MD cắt tia BA tại H, chứng minh tam giác DHC cânc)Chứng minh BD>AM và tính số đo góc DHCCho tam giác ABC có góc A=80 độ:B=60 độa) Trên BC lấy điểm M sao cho BM=BA. Tia phân giác góc B cắt AC tại D. Chứng minh: tam giác BAD= tam giác BMDb)Tia MD cắt tia BA tại H, chứng...
Đọc tiếp

Cho tam giác ABC có góc A=80 độ:B=60 độ

a) Trên BC lấy điểm M sao cho BM=BA. Tia phân giác góc B cắt AC tại D. Chứng minh: tam giác BAD= tam giác BMD

b)Tia MD cắt tia BA tại H, chứng minh tam giác DHC cân

c)Chứng minh BD>AM và tính số đo góc DHC

Cho tam giác ABC có góc A=80 độ:B=60 độ

a) Trên BC lấy điểm M sao cho BM=BA. Tia phân giác góc B cắt AC tại D. Chứng minh: tam giác BAD= tam giác BMD

b)Tia MD cắt tia BA tại H, chứng minh tam giác DHC cân

c)Chứng minh BD>AM và tính số đo góc DHCCho tam giác ABC có góc A=80 độ:B=60 độ

a) Trên BC lấy điểm M sao cho BM=BA. Tia phân giác góc B cắt AC tại D. Chứng minh: tam giác BAD= tam giác BMD

b)Tia MD cắt tia BA tại H, chứng minh tam giác DHC cân

c)Chứng minh BD>AM và tính số đo góc DHCCho tam giác ABC có góc A=80 độ:B=60 độ

a) Trên BC lấy điểm M sao cho BM=BA. Tia phân giác góc B cắt AC tại D. Chứng minh: tam giác BAD= tam giác BMD

b)Tia MD cắt tia BA tại H, chứng minh tam giác DHC cân

c)Chứng minh BD>AM và tính số đo góc DHCCho tam giác ABC có góc A=80 độ:B=60 độ

a) Trên BC lấy điểm M sao cho BM=BA. Tia phân giác góc B cắt AC tại D. Chứng minh: tam giác BAD= tam giác BMD

b)Tia MD cắt tia BA tại H, chứng minh tam giác DHC cân

c)Chứng minh BD>AM và tính số đo góc DHC

1

a) Xét ΔBAD và ΔBMD có 

BA=BM(gt)

\(\widehat{ABD}=\widehat{MBD}\)(BD là tia phân giác của \(\widehat{ABM}\))

BD chung

Do đó: ΔBAD=ΔBMD(c-g-c)

a: Xét ΔOBC có góc OBC=góc OCB

nên ΔOBC cân tại O

b: AB=AC

BO=CO

=>AO là trung trực của BC

=>AO vuông góc BC

c: Xét ΔAQB và ΔAPC có

góc ABQ=góc ACP

AB=AC
góc A chung

=>ΔAQB=ΔAPC

=>QB=PC

 

13 tháng 7 2019

a) BOC=180-(OBC+OCB)=180-(1/2.ABC+1/2.ACB)=180-[1/2(ABC+ACB)]=180-{1/2[180-BAC]}=180-1/2.120=180-60=120 độ

13 tháng 7 2019

A B C D E O F

a, tam giác ABC có : góc ABC + góc ACB + góc BAC = 180 (đl)

góc BAC  = 60 (gt)

=> góc ABC + góc ACB = 180 - 60 = 120     (1)

BD là phân giác của góc ABC (gt) => góc DBC = 1/2*góc ABC (tc)

CE là phân giác của góc ACB (gt) => ECB = 1/2*góc ACB (tc)

=> góc DBC + góc ECB = 1/2*góc ABC + 1/2*góc ACB = 1/2(góc ABC + góc ACB) và (1)

=> góc DBC + góc ECB = 1/2*120 = 60 

xét tam giác OBC có : góc OBC + góc BCO + góc BOC = 180 (đl)

=> góc BOC = 180 - 60 = 120

b,  góc BOC + góc BOE = 180 (kb) mà góc BOC = 120 (câu a)

=> góc BOE = 180 - 120 = 60   (2)

OF là phân giác của góc BOC (gt) 

=> góc BOF = 1/2*BOC = góc FOC (tc) mà góc BOC = 120 (câu a)

=> góc BOF = 1/2*120 = 60  = góc FOC   (3)

(2)(3) => góc BOF = góc BOE 

xét tam giác BOF và tam giác BOE có  : BO chung

góc ABO = EBO = góc FBO do BO là phân giác của góc ABC (gt)

=> tam giác BOF = góc BOE (g-c-g)

c, góc DOC = góc BOE (đối đỉnh) mà góc BOE = 60 (Câu b)

=> góc DOC = 60

góc FOC = 60 (câu b)

=> góc DOC = góc FOC 

xét tam giác DOC và tam giác FOC có : OC chung

góc FCO = góc DCO do OC là phân giác của góc BCA (gt)

=> tam giác DOC = tam giác FOC (g-c-g)

=> OD = OF (Đn)

tam giác OEB = tam giác OFB (câu b) => OE = OF (đn)

=> OE = OF = OD 

d, góc EOB + góc BOF = góc EOF 

mà góc EOB = góc BOF = 60

=> góc EOF = 60.2 = 120    (4)

góc FOC + góc OCD = góc FOD 

mà góc FOC = góc OCD = 60

=> góc FOD = 60.2 = 120   (5)

(4)(5) => góc FOD = góc EOF = 120

xét tam giác EOF và tam giác DOF có : OF chung

OE = OD (Câu c)

=> tam giác EOF = tam giác DOF (c-g-c)

=> EF = DF (đn)

=> tam giác EFD cân tại F (đn)       (6)

OE = OF => tam giác OEF cân tại O => góc OFE = (180 - góc EOF) : 2 

mà góc EOF = 120 (cmt)

=> góc EFO = (180 - 120) : 2 = 30

tương tự cm được góc OFD = 30 

mà góc OFD + góc EFO = góc EFD 

=> góc EFD = 30 + 30 = 60      và (6)

=> tam giác EFD đều (tc)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H co

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

d: BM/CM=AB/AC=3/4

=>4BM=3CM

mà BM+CM=10

=>CM=40/7cm;BM=30/7cm