Cho tam giác ABC có góc A=80 độ:B=60 độa) Trên BC lấy điểm M sao cho BM=BA. Tia phân giác góc B cắt AC tại D. Chứng minh: tam giác BAD= tam giác BMDb)Tia MD cắt tia BA tại H, chứng minh tam giác DHC cânc)Chứng minh BD>AM và tính số đo góc DHCCho tam giác ABC có góc A=80 độ:B=60 độa) Trên BC lấy điểm M sao cho BM=BA. Tia phân giác góc B cắt AC tại D. Chứng minh: tam giác BAD= tam giác BMDb)Tia MD cắt tia BA tại H, chứng...
Đọc tiếp
Cho tam giác ABC có góc A=80 độ:B=60 độ
a) Trên BC lấy điểm M sao cho BM=BA. Tia phân giác góc B cắt AC tại D. Chứng minh: tam giác BAD= tam giác BMD
b)Tia MD cắt tia BA tại H, chứng minh tam giác DHC cân
c)Chứng minh BD>AM và tính số đo góc DHC
Cho tam giác ABC có góc A=80 độ:B=60 độ
a) Trên BC lấy điểm M sao cho BM=BA. Tia phân giác góc B cắt AC tại D. Chứng minh: tam giác BAD= tam giác BMD
b)Tia MD cắt tia BA tại H, chứng minh tam giác DHC cân
c)Chứng minh BD>AM và tính số đo góc DHCCho tam giác ABC có góc A=80 độ:B=60 độ
a) Trên BC lấy điểm M sao cho BM=BA. Tia phân giác góc B cắt AC tại D. Chứng minh: tam giác BAD= tam giác BMD
b)Tia MD cắt tia BA tại H, chứng minh tam giác DHC cân
c)Chứng minh BD>AM và tính số đo góc DHCCho tam giác ABC có góc A=80 độ:B=60 độ
a) Trên BC lấy điểm M sao cho BM=BA. Tia phân giác góc B cắt AC tại D. Chứng minh: tam giác BAD= tam giác BMD
b)Tia MD cắt tia BA tại H, chứng minh tam giác DHC cân
c)Chứng minh BD>AM và tính số đo góc DHCCho tam giác ABC có góc A=80 độ:B=60 độ
a) Trên BC lấy điểm M sao cho BM=BA. Tia phân giác góc B cắt AC tại D. Chứng minh: tam giác BAD= tam giác BMD
b)Tia MD cắt tia BA tại H, chứng minh tam giác DHC cân
c)Chứng minh BD>AM và tính số đo góc DHC
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
\(\widehat{DAB}\) chung
Do đó: ΔADB=ΔAEC
=>BD=CE
b: ΔABD=ΔACE
=>\(\widehat{ABD}=\widehat{ACE}\) và AD=AE
Ta có: AD+DC=AC
AE+EB=AB
mà AD=AE và AC=AB
nên DC=EB
Xét ΔOEB vuông tại E và ΔODC vuông tại D có
EB=DC
\(\widehat{OBE}=\widehat{OCD}\)
Do đó: ΔOEB=ΔODC
c: ΔOEB=ΔODC
=>OB=OC
Xét ΔAOB và ΔAOC có
AO chung
OB=OC
AB=AC
Do đó: ΔAOB=ΔAOC
=>\(\widehat{OAB}=\widehat{OAC}\)
=>AO là phân giác của góc BAC
d: Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Ta có: HB=HC
=>H nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,O,H thẳng hàng