K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

S
15 tháng 2

\(\left|2x-3\right|-1=2\\ \left|2x-3\right|=3\\ =>\left\{{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\\ =>\left\{{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\\ =>\left\{{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)

15 tháng 2

∣2x−3∣−1=2

∣2x−3∣=3

=>{2x−3=3

2x−3=−3

=>{2x=6

2x=0

=>{x=3

x=0

NV
2 tháng 9

1. Đúng

2. Sai

3 tháng 9

Ký hiệu:

  • \(A \mid B\) mình hiểu là phần hiệu của tập \(A\) và tập \(B\), tức \(A \backslash B\) (các phần tử thuộc \(A\) mà không thuộc \(B\)).

1) Đẳng thức:

\(\left(\right. A \backslash B \left.\right) \cup \left(\right. B \backslash A \left.\right) \cup \left(\right. A \cap B \left.\right) = A \cup B\)

Phân tích:

  • \(\left(\right. A \backslash B \left.\right)\) là phần chỉ có trong \(A\), không trong \(B\).
  • \(\left(\right. B \backslash A \left.\right)\) là phần chỉ có trong \(B\), không trong \(A\).
  • \(\left(\right. A \cap B \left.\right)\) là phần chung của \(A\) và \(B\).
  • Ba phần này bao phủ toàn bộ phần tử có trong \(A\) hoặc trong \(B\).

Kết luận:

Đúng. Vì ba phần này chính là phân hoạch của \(A \cup B\).


2) Đẳng thức:

\(\left(\right. A \backslash B \left.\right) \cup \left(\right. B \backslash A \left.\right) = A \cup B\)

Phân tích:

  • Phần bên trái là hợp của hai phần tử nằm trong \(A\) hoặc \(B\)nhưng không nằm trong giao \(A \cap B\) (phần giao bị loại ra).
  • Phần bên phải là toàn bộ phần tử thuộc \(A\) hoặc \(B\), bao gồm cả phần giao.

Kết luận:

Sai. Vì phần giao \(A \cap B\) không được tính ở vế trái.


Tóm tắt:

Đẳng thức

Đúng/Sai

Giải thích ngắn

\(\left(\right. A \backslash B \left.\right) \cup \left(\right. B \backslash A \left.\right) \cup \left(\right. A \cap B \left.\right) = A \cup B\)(A∖B)∪(B∖A)∪(A∩B)=A∪B(A∖B)∪(B∖A)∪(A∩B)=A∪B

Đúng

Bao phủ toàn bộ

 

\(A \cup B\)A∪BA∪B

\(\left(\right. A \backslash B \left.\right) \cup \left(\right. B \backslash A \left.\right) = A \cup B\)(A∖B)∪(B∖A)=A∪B(A∖B)∪(B∖A)=A∪B

Sai


23 tháng 4 2018

mik bt giải r chờ tí

23 tháng 4 2018

nhanh lên bạn mình cần gấp lém

QT
Quoc Tran Anh Le
Giáo viên
30 tháng 8

1: A=(3^2-1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)

=(3^4-1)(3^4+1)(3^8+1)(3^16+1)

=(3^8-1)(3^8+1)(3^16+1)

=(3^16-1)(3^16+1)

=3^32-1

2: B=(1-3^2)(1+3^2)*...*(1+3^16)

=(1-3^4)(1+3^4)(1+3^8)(1+3^16)

=1-3^32

7 tháng 7 2023

1

\(A=8\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(3^{16}-1\right)\left(3^{16}+1\right)\\ =3^{32}-1\)

 

\(B=\left(1-3\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(1-3^2\right)\left(1+3^2\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(1-3^4\right)\left(1+3^4\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(1-3^8\right)\left(1+3^8\right)\left(3^{16}+1\right)\\ =\left(1-3^{16}\right)\left(1+3^{16}\right)=1-3^{32}\)

19 tháng 4 2017

\(A=4.\dfrac{25}{16}+25.\left[\dfrac{9}{16}:\dfrac{125}{64}\right]:\dfrac{-27}{8}\)

\(=\dfrac{25}{16}+25.\dfrac{36}{125}:\dfrac{-27}{8}=-\dfrac{137}{240}\left(1\right)\)

\(B=125.\left[\dfrac{1}{25}+\dfrac{1}{64}:8\right]-64.\dfrac{1}{64}\)

\(=125.\dfrac{89}{1600}:8-64.\dfrac{1}{64}=\dfrac{-67}{512}\left(2\right)\)

Vì (2) > (1) => B > A

24 tháng 8 2018

nhiều thế, đăng ít một thôi bạn

24 tháng 8 2018

a/ \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(\Rightarrow2A=3^{128}-1\Rightarrow A=\dfrac{3^{128}-1}{2}\)

9 tháng 12 2019

Dùng liên hợp.

pt <=> \(\left(x-\sqrt{2}\right)\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)\left(1+\sqrt{3}\right)\)

\(-3\left(x-1\right)\left(x-\sqrt{3}\right)\left(\sqrt{2}+1\right)\left(\sqrt{2}+\sqrt{3}\right)\)

\(+2\left(x-1\right)\left(x-\sqrt{2}\right)\left(\sqrt{3}+1\right)\left(\sqrt{3}+\sqrt{2}\right)=3x-1\)

<=> \(\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)\left[\left(x-\sqrt{2}\right)\left(1+\sqrt{3}\right)-\left(x-1\right)\left(\sqrt{2}+\sqrt{3}\right)\right]\)

\(-2\left(x-1\right)\left(\sqrt{3}+\sqrt{2}\right)\left[\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)-\left(x-\sqrt{2}\right)\left(1+\sqrt{3}\right)\right]\)

\(=3x-1\)

<=> \(\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)\left(x+\sqrt{3}\right)\left(1-\sqrt{2}\right)\)

\(-2\left(x-1\right)\left(\sqrt{3}+\sqrt{2}\right)\left(x+1\right)\left(\sqrt{2}-\sqrt{3}\right)=3x-1\)

<=> \(3-x^2-2\left(1-x^2\right)=3x-1\)

<=> \(x^2-3x+2=0\) phương trình bậc 2.

Em làm tiếp nhé!