Tim số tự nhiên a, biết a nằm trong khoảng tứ 1000 đến 1500 và a chia 12;15;18 đều dư 7.(Yêu cầu lời giải luôn)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số thỏa mãn đề bài là \(x\) ( 1500 ≤ \(x\) ≤ 1800)
\(\left\{{}\begin{matrix}x-7⋮29\\x-15⋮31\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=29k +7\\29k+7-15⋮31\end{matrix}\right.\); k \(\in\) Z
⇒ \(\left\{{}\begin{matrix}1500\le29k+7\le1800\\29k-8⋮31\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}51,48\le k\le61,82\\29k-8-31k⋮31\end{matrix}\right.\) k \(\in\)Z
⇔ \(\left\{{}\begin{matrix}k\in\left\{52;53;...;61\right\}\\2k-8⋮31\end{matrix}\right.\) (1)
2k - 8 ⋮ 31 ⇔ k - 4 ⋮ 31 ⇔ k- 4 \(\in\) { 0; 31; 62; 93;...;}
k \(\in\) { -4; 27; 58; 79;...;} (2)
Kết hợp (1) và (2) ta có: k = 58
Thay k = 58 vào biểu thức 29k + 7 ta có
Số cần tìm là: 29.58 + 7 = 1689
Kết luận: số thỏa mãn đề bài là 1689
Thử lại kết quả ta có: 1500 < 1689 < 1800 (ok)
1689 : 29 = 58 dư 7 ok
1689 : 31 = 54 dư 15 ok
Vậy kết quả bài toán là đúng.
Lời giải:
Theo đề:
$a-3\vdots 7\Rightarrow a-10\vdots 7$
$a-1\vdots 9\Rightarrow a-10\vdots 9$
$\Rightarrow a-10\vdots BCNN(7,9)$
$\Rightarrow a-10\vdots 63$
Đặt $a-10=63k$ với $k$ nguyên
$a=63k+10$
$350\leq a\leq 500$
$350\leq 63k+10\leq 500$
$\frac{340}{63}\leq k\leq \frac{490}{63}$
Vì $k$ nguyên nên $k\in \left\{6; 7\right\}$
Nếu $k=6$ thì $a=388$ không chia hết cho $11$ (loại)
Nếu $k=7$ thì $a=451$ (tm)
Vậy........
goi so can tim la a
Theo de bai ta co :
a chia het cho 8;10;15suy ra a thuoc BCNN của 8;10;15 =120
B(120)={0;120;240;360;...;960}
Vì a trong khong tu 500 den 1000 nen a = {600;720;840;960}
**** fan TFBOYS khải đao
Ta có: a-7 chia hết cho 12,15,18
=> a-7 là BSC của 12,15,18
BSCNN của 12,15,18=180
=> BSC (12,15,17)=(180,360,540,720, 900, 1080, 1260, 1440, 1620,....)
Do a nằm trong khoảng 1000-1500
=> a-7 = 1080, 1260, 1440
=> a=1087; 1267 và 1447