K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2

Khi lấy ra từ trong hộp cùng lúc 4 viên bi thì các khả năng sau đây có thể xảy ra:
1. Có 1 viên bi màu đỏ, 3 viên bi màu xanh được lấy ra
2. Có 2 viên bi màu đỏ, 2 viên bi màu xanh được lấy ra
3. Có 3 viên bi màu đỏ, 1 viên bi màu xanh được lấy ra
4. Có 4 viên bi màu xanh được lấy ra

6 tháng 2

TH1 : 3 đỏ 1 xanh

TH2 : 2 đỏ 2 xanh

TH3 : 1 đỏ 3 xanh

TH4 : 4 xanh

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Vì hai túi là khác nhau nên biến cố lấy một viên bi mỗi túi là độc lập.

Gọi biến cố A: “Hai viên bi được lấy có cùng màu xanh”, biến cố B: “Hai viên bi được lấy có cùng màu đỏ”, biến cố C: “Hai viên bi được lấy có cùng màu”

a) Xác suất lấy được viên bi màu xanh từ túi I là \(\frac{3}{{10}}\)

Xác suất lấy được viên bi màu xanh từ túi II là \(\frac{{10}}{{16}} = \frac{5}{8}\)

Xác suất lấy được hai viên bi cùng màu xanh là \(\frac{3}{{10}}.\frac{5}{8} = \frac{3}{{16}}\)

b) Xác suất lấy được viên bi màu đỏ từ túi I là \(\frac{7}{{10}}\)

Xác suất lấy được viên bi màu đỏ từ túi II là \(\frac{6}{{16}} = \frac{3}{8}\)

Xác suất lấy được hai viên bi cùng màu đỏ là \(\frac{7}{{10}}.\frac{3}{8} = \frac{{21}}{{80}}\)

c) Ta có \(C = A \cup B\) mà A và B xung khắc nên

\(P\left( C \right) = P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) = \frac{3}{{16}} + \frac{{21}}{{80}} = \frac{9}{{20}}\)

Vậy xác suất để hai viên bi được lấy có cùng màu là \(\frac{9}{{20}}.\)

d) Gọi biến cố D: “Hai viên bi được lấy không cùng màu”

Khi đó \(\overline D  = C\)

\( \Rightarrow P\left( D \right) = 1 - P\left( {\overline D } \right) = 1 - P\left( C \right) = 1 - \frac{9}{{20}} = \frac{{11}}{{20}}\)

Vậy xác suất để hai viên bi được lấy không cùng màu là \(\frac{{11}}{{20}}.\)

Màu xanh 

NV
22 tháng 12 2022

Không gian mẫu: \(C_{15}^4\)

a.

Số cách lấy 4 viên bi trong đó có 3 viên màu đỏ: \(C_7^3C_8^1\)

Xác suất: \(P=\dfrac{C_7^3.C_8^1}{C_{15}^4}\)

b.

Lấy 4 viên không có viên đỏ nào (lấy từ 8 viên 2 màu còn lại): \(C_8^4\) cách

Lấy 4 viên có ít nhất 1 viên đỏ: \(C_{15}^4-C_8^4\)

Xác suất: \(P=\dfrac{C_{15}^4-C_8^4}{C_{15}^4}\)

c.

Các trường hợp thỏa mãn: (2 đỏ 1 xanh 1 vàng), (1 đỏ 2 xanh 1 vàng), (1 đỏ 1 vàng 2 xanh)

Số cách lấy: \(C_7^2C_5^1C_3^1+C_7^1C_5^2C_3^1+C_7^1C_5^1C_3^2\)

Xác suất: \(P=\dfrac{C_7^2C_5^1C_3^1+C_7^1C_5^2C_3^1+C_7^1C_5^1C_3^2}{C_{15}^4}\)

7 tháng 12 2018

Đáp án là C

3 tháng 11 2019

Đáp án C

Để xác định biến cố, ta xét các trường hợp sau:

+) 2 bi xanh và 1 bi đỏ, suy ra có C 5 2 . C 4 1 = 40  cách.

+) 3 bi xanh và 0 bi đỏ, suy ra có C 5 3 = 10  cách.

Suy ra xác suất cần tính là  P = 40 + 10 C 9 3 = 25 42

8 tháng 2 2017

Gọi A  là biến cố lấy ra được 3 viên bi màu đỏ.

Số cách lấy 3 viên bi từ 20 viên bi là ​ C 20 3  nên ta có Ω = C 20 3 = 1140 .

Số cách lấy 3 viên bi màu đỏ là ​ C 8 3   =    56  nên Ω A = 56 .

Do đó:  P ( A ) = 56 1140 = 14 285

Đáp án B

HQ
Hà Quang Minh
Giáo viên
15 tháng 9 2023

Vì 3 viên bi xanh, 4 viên bi đỏ và 5 viên b vàng có kích thước và khối lượng như nhau nên 12 kết quả của phép thử có khả năng xảy ra bằng nhau.

- Biến cố \(A\) xảy ra khi ta lấy được viên bi màu xanh nên có 3 kết quả thuận lợi cho \(A\). Xác suất của biến có \(A\) là:

\(P\left( A \right) = \frac{3}{{12}} = \frac{1}{4}\).

- Biến cố \(B\) xảy ra khi ta lấy được viên bi không có màu vàng nên viên bi lấy được có thể có màu xanh hoặc màu đỏ. Do đó, có 7 kết quả thuận lợi cho \(B\). Xác suất của biến có \(B\) là:

\(P\left( B \right) = \frac{7}{{12}}\).