Cho 🔺ABC (AB<AC).Tia phân giác góc A cắt BC tại D.Trên AC lấy E sao cho AB = AE.
a) Cm: 🔺ABD =🔺AED và suy ra góc ABD = AED.
b) Cm H là giao điểm AD và BE. Cm:AD vuông góc BE.
c) Tia ED cắt AB tại F.Cm 🔺ABC = 🔺AEF.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABE và ΔACF có
Alà góc chung
AEB=AFC(=90^O)
=> ΔABE đồng dạng ΔACF (g.g)
=>AF/AE=AC/AB
=> AB/AE=AC/AF
XétΔAEF và ΔABC có
AB/AE=AC/AF
Và Agóc chung
Suy raΔAEF đồng dạngΔABC( c.g.c)
Hình bạn tự vẽ nha!
Bài 2:
a) Xét 2 \(\Delta\) vuông \(ABH\) và \(KBH\) có:
\(\widehat{AHB}=\widehat{KHB}=90^0\left(gt\right)\)
\(AH=KH\left(gt\right)\)
Cạnh BH chung
=> \(\Delta ABH=\Delta KBH\) (cạnh huyền - cạnh góc vuông)
b) Ta có: \(\Delta ABC\) vuông tại \(A\left(gt\right)\)
=> \(\widehat{B}+\widehat{C}=90^0\) (tính chất tam giác vuông)
=> \(2.\widehat{B}=90^0\)
=> \(\widehat{B}=90^0:2\)
=> \(\widehat{B}=45^0\)
=> \(45^0+\widehat{C}=90^0\)
=> \(\widehat{C}=90^0-45^0\)
=> \(\widehat{C}=45^0.\)
Xét \(\Delta BKC\) có:
\(\widehat{B}+\widehat{C}+\widehat{BKC}=180^0\) (định lí tổng 3 góc trong một tam giác)
Thay số vào ta được:
\(45^0+45^0+\widehat{BKC}=180^0\)
=> \(90^0+\widehat{BKC}=180^0\)
=> \(\widehat{BKC}=180^0-90^0\)
=> \(\widehat{BKC}=90^0.\)
Vậy \(\widehat{BKC}=90^0.\)
Chúc bạn học tốt!