K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để A nguyên thì 2n-6+5 chia hết cho -n+3

=>5 chia hết cho n-3

=>\(n-3\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{4;2;8;-2\right\}\)

Để đây là số nguyên thì \(n-1\in\left\{1;-1;2;-2\right\}\)

=>\(n\in\left\{2;0;3;-1\right\}\)

6 tháng 2 2023

cảm ơn 

 

5 tháng 3 2021

hg,masnhjl6 vhyb yjdjtrndgtuhdh do

24 tháng 11 2018

Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)

=> p^2 :3(dư 1)

=> p^2+2018 chia hết cho 3 và>3

nên là hợp số

2, Vì n ko chia hết cho 3 và>3

nên n^2 chia 3 dư 1

=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố 

3, Ta có:

P>3

p là số nguyên tố=>8p^2 không chia hết cho 3

mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3

Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3

mà 2 số trước ko chia hết cho 3

nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)

4, Vì p>3 nên p lẻ

=> p+1 chẵn chia hết cho 2 và>2 

p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)

=> p+1=3k+3 chia hết cho 3 và>3 

từ các điều trên

=> p chia hết cho 2.3=6 (ĐPCM)

1 tháng 2 2016

a, để n+4 phần 4 la so nguyên thì n+4 phai chia hết cho 4 

Mà n chia hết cho n => 4 phai chia hết cho n => n thuộc vào ƯỚC của 4 (1,-1,2,-2,4,-4)

rồi OK tự kẻ bảng ma tình nhè

Các kí trong bài mik  ko ki hiệu dc tự làm tiếp nhé

15 tháng 7 2021

Ta có P = \(\frac{n^3-2n^2+3}{n-2}=\frac{n^2\left(n-2\right)+3}{n-2}=n^2+\frac{3}{n-2}\)

Để P \(\inℤ\Leftrightarrow3⋮n-2\Leftrightarrow n-2\inƯ\left(3\right)\Leftrightarrow n-2\in\left\{1;3;-1;-3\right\}\)

<=> \(n\in\left\{3;5;1;-1\right\}\)

Vậy  \(n\in\left\{3;5;1;-1\right\}\)

22 tháng 9 2023

giúp mik đi 

xin đấy

25 tháng 9 2023

app như cc

hỏi ko ai trả lời

4 tháng 3 2022

giúp mik nhanh vs các bn ơiiiiii

:(

4 tháng 3 2022

-bạn tự lập bảng nhé 

a, \(3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

b, \(\dfrac{2\left(n-3\right)+11}{n-3}=2+\dfrac{11}{n-3}\Rightarrow n-3\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

n-31-111-11
n4214-8

 

c, \(\dfrac{3n}{n+2}=\dfrac{3\left(n+2\right)-6}{n+2}=3-\dfrac{6}{n+2}\Rightarrow n+2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)