Cho tam giác nhọn DEF có DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ( O;R ) , ( I ;r ) lần lượt là các đường tròn ngoại tiếp tam giác ABC, DEF
Tam giác ABC ~ Tam giác DEF ( vì \(\widehat{ABC}=\widehat{DEF};\widehat{BAC}=\widehat{EDF}\)) \(\Rightarrow\widehat{ABC}=\widehat{DEF}\)
\(\widehat{ACB},\widehat{DEF}\)nhọn nên \(\widehat{ACB}=\frac{1}{2}\widehat{AOB};\widehat{DEF}=\frac{1}{2}\widehat{DIE}\)( hệ quả góc nội tiếp )
\(\Rightarrow\widehat{AOB}=\widehat{DIE}\)
\(OA=OB\left(=R\right)\Rightarrow\Delta OAB\)cân tại O
\(ID=IE\left(=r\right)\Rightarrow\Delta IDE\)cân tại I
Do đó Tam giác OAB ~ Tam giác IDE \(\Rightarrow\frac{OA}{ID}=\frac{AB}{DE}\Rightarrow\frac{R}{r}=\frac{3DE}{DE}\)
\(\Rightarrow R=3r\) ( đpcm)
Gọi ( O; R ), ( I; R ) lần lượt là các đường tròn ngoại tiếp tam giác ABC, DEF
Tam giác ABC ~ Tam giác DEF ( vì \(\widehat{ABC}=\widehat{DEF;}\widehat{BAC}=\widehat{EDF}\) ) \(\Rightarrow\widehat{ABC}=\widehat{DEF}\)
\(\widehat{ABC}=\widehat{DEF}\)nhọn nên \(\widehat{ACB}=\frac{1}{2}\widehat{AOB};\widehat{DEF}=\frac{1}{2}\widehat{DIE}\)(hệ quả góc nội tiếp )
\(\Rightarrow\widehat{AOB}=\widehat{DIE}\)
\(OA=OA\left(=R\right)\Rightarrow\Delta OAB\)cân tại O
Do đó Tam giác OAB ~ Tam giác IDE\(\Rightarrow\frac{OA}{ID}=\frac{AB}{DE}\Rightarrow\frac{R}{r}=\frac{3DE}{DE}\)
\(\Rightarrow R=3r\left(đpcm\right)\)
Rất vui vì giúp đc bạn <3
Sửa đề: Cho ΔDEF nhọn
a: Xét ΔDKF vuông tại K và ΔDIE vuông tại I có
\(\widehat{KDF}\) chung
Do đó: ΔDKF~ΔDIE
=>\(\dfrac{DK}{DI}=\dfrac{DF}{DE}\)
=>\(DK\cdot DE=DI\cdot DF\)
b: ta có: \(\dfrac{DK}{DI}=\dfrac{DF}{DE}\)
=>\(\dfrac{DK}{DF}=\dfrac{DI}{DE}\)
Xét ΔDKI và ΔDFE có
\(\dfrac{DK}{DF}=\dfrac{DI}{DE}\)
\(\widehat{KDI}\) chung
Do đó: ΔDKI~ΔDFE
c: Xét ΔFIE vuông tại I và ΔFHD vuông tại H có
\(\widehat{HFD}\) chung
Do đó: ΔFIE~ΔFHD
=>\(\dfrac{FI}{FH}=\dfrac{FE}{FD}\)
=>\(\dfrac{FI}{FE}=\dfrac{FH}{FD}\)
Xét ΔFIH và ΔFED có
\(\dfrac{FI}{FE}=\dfrac{FH}{FD}\)
\(\widehat{EFD}\) chung
Do đó: ΔFIH~ΔFED
=>\(\widehat{FIH}=\widehat{FED}\)
d:
Sửa đề: \(EK\cdot ED+FI\cdot FD=EF^2\)
Xét ΔEKF vuông tại K và ΔEHD vuông tại H có
góc KEF chung
Do đó: ΔEKF~ΔEHD
=>\(\dfrac{EK}{EH}=\dfrac{EF}{ED}\)
=>\(EK\cdot ED=EF\cdot EH\)
Ta có: \(\dfrac{FI}{FE}=\dfrac{FH}{FD}\)
=>\(FI\cdot FD=FH\cdot FE\)
\(EK\cdot ED+FI\cdot FD\)
\(=EF\cdot EH+FH\cdot EF=EF^2\)
TT | Nội dung | Đúng | Sai |
1 | Nếu hai tam giác có ba góc bằng nhau từng đôi một thì hai tam giác đó bằng nhau. |
| x |
2 | Nếu ABC và DEF có AB = DE, BC = EF, thì ABC = DEF | x |
|
3 | Trong một tam giác, có ít nhất là hai góc nhọn. | x |
|
4 | Nếu góc A là góc ở đáy của một tam giác cân thì > 900. |
| x |
5 | Nếu hai tam giác có ba cạnh tương ứng bằng nhau thì hai tam giác giác đó bằng nhau | x |
|
6 | Nếu một tam giác vuông có một góc nhọn bằng 450 thì tam giác đó là tam giác vuông cân Đúng |
Chúc em học giỏi