K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1

Tứ giác ABCD là hình thoi nên ˆA=ˆC.A^=C^. Tứ giác ABCD nội tiếp đường tròn (O; R) nên ˆA+ˆC=180°.A^+C^=180°. Suy ra ˆA=ˆC=180°2=90°.A^=C^=180°2=90°. Hình thoi ABCD có ˆA=ˆC=90°A^=C^=90° nên là hình vuông. Khi đó, hình vuông ABCD nội tiếp trong đường tròn có bán kính là R=AB√22=a√2⋅√22=a

29 tháng 11 2023
  • Gọi I là giao điểm của EG và HF.
  • Theo định lí tiếp tuyến, ta có: $\angle{OBE} = \angle{OBF} = 90^\circ$ và $\angle{ODF} = \angle{ODG} = 90^\circ$.
  • Vì $BE$ và $DF$ là tiếp tuyến của đường tròn (O), nên $OE$ và $OF$ là phân giác của $\angle{BOD}$.
  • Tương tự, $OG$ và $OH$ là phân giác của $\angle{BOD}$.
  • Khi đó, ta có: $\angle{EOI} = \angle{FOI} = \angle{GOI} = \angle{HOI} = 90^\circ$.
  • Do đó, $OEIF$ và $OFIG$ là các hình chữ nhật.
  • Vì $OE = OF$ và $OG = OH$, nên $OEIF$ và $OFIG$ là các hình vuông.
  • Từ đó, ta có: $BE = EF$ và $DG = GH$.
  • Vì $ABCD$ là hình thoi, nên $AB = AD$ và $BC = CD$.
  • Khi đó, ta có: $AB = AD = BE + EF = BE + DF$ và $BC = CD = DG + GH = EG + HF$.
  • Từ đó, ta suy ra: $BE + DF = EG + HF$.
  • Do đó, $BE.DF = EG.HF$.
  • Từ định lí tiếp tuyến, ta có: $BE.DF = OB^2$ và $EG.HF = OG^2$.
  • Vì $OB = OG$ (bán kính đường tròn (O)), nên ta có: $BE.DF = OB.OD$.

Vậy, ta đã chứng minh được a) BE.DF = OB.OD.

b) Ta có:

  • Gọi I là giao điểm của EG và HF.
  • Theo chứng minh ở câu a), ta có: $OEIF$ và $OFIG$ là các hình vuông.
  • Khi đó, ta có: $\angle{EOI} = \angle{FOI} = \angle{GOI} = \angle{HOI} = 90^\circ$.
  • Do đó, ta có: $\angle{EOI} + \angle{FOI} + \angle{GOI} + \angle{HOI} = 360^\circ$.
  • Từ đó, ta suy ra: $\angle{EOI} + \angle{FOI} + \angle{GOI} + \angle{HOI} = 360^\circ$.
  • Vì $EG \parallel HF$, nên ta có: $\angle{EOI} + \angle{FOI} = 180^\circ$.
  • Từ đó, ta suy ra: $\angle{GOI} + \angle{HOI} = 180^\circ$.
  • Do đó, ta có: $\angle{GOI} = \angle{HOI}$.
  • Vậy, ta đã chứng minh được b) EG // HF.
30 tháng 5 2018

Tìm ba phân số khác nhau biết phân số thứ nhất và phân số thứ hai là 7/8,tổng của phân số thứ hai và phân số thứ ba là 8/7,tổng của phân số thứ nhất và phân số thứ ba là 8/9

29 tháng 12 2023

Ta có: ΔBAO vuông tại A

=>ΔBAO nội tiếp đường tròn đường kính BO

=>A nằm trên đường tròn đường kính BO(1)

Ta có: ΔBMO vuông tại M

=>ΔBMO nội tiếp đường tròn đường kính BO

=>M nằm trên đường tròn đường kính BO(2)

Từ (1),(2) suy ra A,B,M,O cùng thuộc đường tròn đường kính BO

a: góc OAD+góc OBD=180 độ

=>OADB nội tiếp

b: góc OAB+góc OBA=1/2*120=60 độ

=>góc AOB=120 độ

=>góc ADB=60 độ

=>CA=AD=DB=CB

=>CADB là hình thoi

4 tháng 6 2018

Đáp án A

Gọi O là giao điểm của AC và BD. Khi đó, đường tròn tâm O bán kính R = a/2 là đường tròn nội tiếp hình vuông ABCD.

Do O là tâm đường tròn nội tiếp hình vuông ABCD nên đường tròn tiếp xúc với các cạnh của hình vuông.

Suy ra: AB; BC; CD và DA là các tiếp tuyến của đường tròn (O).

25 tháng 5 2017

7 tháng 8 2018

26 tháng 5 2018

HS tự làm

9 tháng 10 2019

Chọn C

Gọi cạnh của hình lập phương bằng a

Khi đó thể tích