K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2016

Cái này thì....mình mù tịt

Vì chưa học!!!!

Ai đồng ý thì cho mình xin 1 k!!!

6 tháng 10 2016

hazz... có bạn HSG nào giải giúp ko

11 tháng 4 2019

\(\left(\sqrt{2}+\sqrt{12}\right)+\left(\sqrt{6}+\sqrt{20}\right)\)

Ta sẽ c/m \(\sqrt{2}+\sqrt{12}< 5\) và \(\sqrt{6}+\sqrt{20}< 7\)

Thật vậy:Ta cần c/m \(\sqrt{2}+\sqrt{12}< 5\Leftrightarrow2+2\sqrt{24}+12< 25\) (do hai vế đều dương nên bình phương cả hai vế lên khai triển -> phá ngoặc)

\(\Leftrightarrow2\sqrt{24}< 11\Leftrightarrow\sqrt{24}< \frac{11}{2}\) (1) 

Ta có: \(\sqrt{24}< \sqrt{25}=5< \frac{11}{2}\)vậy (1) đúng suy ra \(\sqrt{2}+\sqrt{12}< 5\) (2)

Ta cần c/m: \(\sqrt{6}+\sqrt{20}< 7\Leftrightarrow6+2\sqrt{120}+20< 49\)

\(\Leftrightarrow2\sqrt{120}=23\Leftrightarrow\sqrt{120}< \frac{23}{2}\) (3)

Ta có: \(\sqrt{120}< \sqrt{121}=11< \frac{23}{2}\) do đó (3) đúng suy ra \(\sqrt{6}+\sqrt{20}< 7\) (4)

Cộng theo vế (2) và (4) ta được: \(\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}< 7+5=12^{\left(đpcm\right)}\)

P/s: Bài easy + nhiều cách giải mà không ai chém nhỉ?

16 tháng 12 2017

b, \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)

Ta có: \(1< 100\Rightarrow\sqrt{1}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{1}}< \frac{1}{\sqrt{100}}\)

           \(2< 100\Rightarrow\sqrt{2}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{2}}< \frac{1}{\sqrt{100}}\)

          \(3< 100\Rightarrow\sqrt{3}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{3}}< \frac{1}{\sqrt{100}}\)

           ______________________________________________

          \(100=100\Rightarrow\sqrt{100}=\sqrt{100}\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\left(1\right)\)

Từ (1) suy ra:

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\left(100sh\frac{1}{\sqrt{100}}\right)\)

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}.100\)

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{10}{\sqrt{100}}\)

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>10\left(ĐPCM\right)\)

5 tháng 11 2017

b, \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)

.............................................

Cộng với vế 99 của BĐT trên, ta được:

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{99}}>99.\frac{1}{10}=\frac{99}{10}\)

\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{99}}+\frac{1}{\sqrt{100}}>\frac{99}{10}=\frac{1}{10}=\frac{100}{10}=10\)

25 tháng 11 2017

Wrecking Ball đã làm đúng

to ra kết quả giống cậu : Wrecking Ball

là đáp án đúng

tk nha ( chúc bn học gioi )