Câu 3:
M=5+\(5^2+5^3+\cdots\ldots+5^{80}\)
a)CMR M⋮6
b) M ko phải là số chín phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy các lũy thừa của 5 từ 52 trở đi đều chia hết cho 5 và 25.
=>52+...+580 chia hết cho 5 và 25
Nhưng 5 ko chia hết cho 25
=> M ko phải số chính phương vì scp chia hết cho a
a) Ta có: M = 5 + 5 2 + 5 3 + … + 5 80 = 5 + 5 2 + 5 3 + … + 5 80 = (5 + 5 2) + (53 + 5 4) + (55 + 5 6) +... + (579 + 5 80) = (5 + 5 2) + 5 2 .(5 + 5 2) + 5 4(5 + 5 2) + ... + 5 78(5 + 5 2) = 30 + 30.52 + 30.54 + ... + 30.578 = 30 (1+ 5 2 + 5 4 + ... + 5 78) 30 b) Ta thấy : M = 5 + 5 2 + 5 3 + … + 5 80 chia hết cho số nguyên tố 5. Mặt khác, do: 5 2+ 5 3 + … + 5 80 chia hết cho 5 2 (vì tất cả các số hạng đều chia hết cho 5 2) M = 5 + 5 2 + 5 3 + … + 5 80 không chia hết cho 5 2 (do 5 không chia hết cho 5 2) VnDoc - Tải tài liệu, văn bản pháp luật, biểu mẫu miễn phí M chia hết cho 5 nhưng không chia hết cho 5 2 M không phải là số chính phương. (Vì số chính phương chia hết cho số nguyên tố p thì chia hết cho p 2).
Đúng ko???
Dựa vào đây mà làm nhé : Câu hỏi của nhi anny - Toán lớp 9 - Học toán với OnlineMath
a)\(M=5+5^2+5^3+5^4+...+5^{79}+5^{80}\)(có 80 số hạng)
\(M=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{79}+5^{80}\right)\)(có 40 nhóm)
\(M=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{79}\left(1+5\right)\)
\(M=5\cdot6+5^3\cdot6+...+5^{79}\cdot6\)
\(M=6\left(5+5^3+...+5^{79}\right)⋮6\)
a) M = 5 + 52 + 53 + ... + 580 (có 80 số hạng; 80 chia hết cho 2)
M = (5 + 52) + (53 + 54) + ... + (579 + 580)
M = 5.(1 + 5) + 53.(1 + 5) + ... + 579.(1 + 5)
M = 5.6 + 53.6 + ... + 579.6
M = 6.(5 + 53 + ... + 579) chia hết cho 6
Chứng tỏ M chia hết cho 6
b) Ta thấy các lũy thừa của 5 từ 52 trở đi đều chia hết cho 5 và 25
=> 52; 53; ...; 580 đều chia hết cho 5 và 25
Mà 5 chia hết cho 5 nhưng không chia hết cho 25
=> M chia hết cho 25 nhưng không chia hết cho 25, không phải số chính phương
Chứng tỏ M không phải số chính phương
a. Ta có: M = 5 + 52 + 53 + ...+ 580
= 5 + 52 + 55 + ... + 580 = (5 + 52) + (53 + 54) + (55 + 56) + ... + (579 + 580)
= (5 + 52) + 52 . (5 + 52) + ... + 578(5 + 52)
= 30 + 30 . 52 + 30 . 54 + ... + 30 . 578 = 30(1 + 52 + 54 + ... + 578) chia hết cho 30
b. Ta thấy : M = 5 + 52 + 53 + ... + 580 cchia hết cho số nguyên tố 5
Mặt khác, do: 52 + 53 + ... 580 chia hết cho 52 (vì tất cả các số hạng đều chia hết cho 52)
=> M = 5 + 52 + 53 + ... + 580 không chia hết cho 52 (do 5 không chia hết cho 52)
=> M chia hết cho 5 nhưng không chia hết cho 52
=> M không phải số chính phương
a) M= 5+5^2+5^3+.....+5^80
M=5^1×1+5^1×5+5^3×1+5^3×5+...+5^79×1+5^79×5
M=5^1×(1+5)+5^3×(1+5)+...+5^79×(1+5)
M=5^1×6+5^3×6+...5^79×6
M=6×(5^1+5^3+...+5^79
Có 6 chia hết cho 6 nênM chia hết cho 6
b)M không là số chính phương vì có 6 chia hết cho 6 nhưng không chia hết cho 36 nên M không là số chính phương
a) M= (5+52+53+54)+...+(577+578+579+580)
M=5(1+5+52+53)+...+577(1+5+52+53)
M=5*156+...+577*156
M=5*(26*6)+...+577*(26*6)
Vậy M chia hết cho 6
b) Tôi không biết thông cảm nhé
M = 5 + 52 + 53 + ... + 52012.
= ( 5+1 ).52 + ( 5+1 ). 53 +...+( 5+1 ). 5 80
=6. 52 + 6. 53 + ...+ 6. 5 80
=\(6\).52.53x...x5 80
Vậy M chia hết cho 6.
https://h.vn/hoi-dap/tim-kiem?q=Cho+bi%E1%BB%83u+th%E1%BB%A9c:+M+=+5+++52+++53+++...+++580.+Ch%E1%BB%A9ng+t%E1%BB%8F+r%E1%BA%B1ng:a.+M+chia+h%E1%BA%BFt+cho+6b.+M+kh%C3%B4ng+ph%E1%BA%A3i+l%C3%A0+s%E1%BB%91+ch%C3%ADnh+ph%C6%B0%C6%A1ng&id=83560
Ta thay:5\(⋮\)5
52\(⋮\)5
........
590\(⋮\)5
=>M chia het cho5 (1)
Lai co:5 ko chia het cho 25
52 \(⋮\)25
...........
590\(⋮\)25
=>M khong chia het cho 25 (2)
Tu (1) va(2)=> M ko la so chinh phuong
mn k mk nha!!
Có M = 5 + 52 + 53 + ......... + 580
Ta thấy rằng M toàn số hạng chia hết cho 1 và 5
\(\Rightarrow M⋮1;5\)
\(\Rightarrow\)M không phải là số chính phương ( đpcm )
Mình chỉ làm theo ý nghĩ của mình thôi, có gì sai bạn thông cảm nha.
`a) M = 5 + 5^2 + 5^3 + ... + 5^80`
`M = 5 . (1 + 5 + 5^2 + ... + 5^79)`
`M = 5 . [(1+5) + (5^2 + 5^3) +... + (5^78 + 5^79)]`
`M = 5 . [(1+5) + 5^2 . (1 + 5) +... + 5^78 . (1 + 5)]`
`M = 5 . (6 + 5^2 . 6 +... + 5^78 .6)`
`M = 5 . 6 . (1+ 5^2 + ... + 5^78)`
Do `6 vdots 6 => M vdots 6`
năm mũ hai hay 5/2