K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2017

Giải theo kiểu đồng dư thức nhé

18 tháng 3 2018

Bài 1 Bài này sai đề bạn nhé!!!!

Bài 2:

a) 74n = (74)n =2401n

Mà 2401n luôn có tận cùng bằng 1

\(\Rightarrow\)2401n - 1 tận cùng là 0 nên chia hết cho 5

b)34n + 1 = (34)n . 3 = 81n . 3

Mà (......1)n luôn có tận cùng là 1

\(\Rightarrow\)(......1)n .3 tận cùng là 3

\(\Rightarrow\)34n + 1 + 2 tận cùng là 5 chia hết cho 5

c)Câu này hình như sai đề bạn nhé!!!

d)92n + 1 = (92)n . 9 = 81n .9

Mà 81n luôn có tận cùng là 1

\(\Rightarrow\) 81n . 9 có tận cùng là 9

\(\Rightarrow\)92n + 1 + 1 có tận cùng là 0 chia hết cho 10

Bạn tự trình bày lại để theo cách của bạn và tick cho mình nhé!!!

9 tháng 11 2019

\(2^{4n-1}⋮15\)

\(=2^n.2^4.2^{-1}⋮15\)

\(2^n.8⋮15\)

em kiểm tra lại đề nhé

26 tháng 6 2015

a) \(2^{4n+1}+3=2.2^{4n}+3=2.16^n+3\)

Do \(16^n\) có tận cùng luôn là 6 nên \(2.16^n\) có tận cùng là 2 => \(2^{4n+1}+3\) có tận cùng là 5 nên chia hết cho 5.

11 tháng 6 2021

đặt A=2^4n+1=16^n nhân 2

16^n đồng dư với 69 (mod 10)

suy ra: 16^n nhân 2 đồng dư với 2 nhân 6=12=2(mod 10)

A : 10 dư 2=10k+2(k thuộc n)

đặt B=3^4n+1

=81^n nhân 3 đồng dư với 1 nhân 3=3(mod 10)

suy ra B:10 dư 3=10p+3(p thuộc N)

ta có 3^2^4n+1+3^3^4n+1+5

=3^10k+2 + 3^10p+3+5

3^10 đồng dư vơí 1(mod 11)

suy ra 3^10k+2 đồng dư với 1 nhân 3^2=9(mod 11)

suy ra 3^10p+3 đồng dư với 1 nhân 3^3=27(mod 11)

5 đồng dư với 5(mod 11)

suy ra 3^2^4n+1 + 3^3^4n+1+5 đồng dư với 9+27+5=41(mod 11)

          gửi bn

3 tháng 3 2022

đồng dư với 41 rồi làm sao nói chia hết cho 11 ạ

 

15 tháng 12 2018

1. Xét n=1
VT = 12 = 1
VP = \(\dfrac{n.\left(4n^2-1\right)}{3}=\dfrac{1.\left(4.1-1\right)}{3}=1\)
=> VT = VP
=> Mệnh đề đúng.
+) Giả sử với n = k , mệnh đề đúng hay: \(1^2+3^2+5^2+...+\left(2k-1\right)^2=\dfrac{k.\left(4k^2-1\right)}{3}\)+) Ta phải chứng minh với n = k + 1, mệnh đề cũng đúng, tức là: \(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{\left(k+1\right).\left(4.\left(k+1\right)^2-1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(1\right)\)
+) Thật vậy, với n = k + 1, theo giả thiết quy nạp, ta có:
\(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{k.\left(4.k^2-1\right)}{3}+\left(2k+1\right)^2\\ =\dfrac{k.\left(4k^2-1\right)+3.\left(2k+1\right)^2}{3}=\dfrac{4k^3-k+12k^2+12k+3}{3}\\ =\dfrac{\left(k+1\right)\left(2k+3\right)\left(2k+1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(2\right)\)+) Từ (1) và (2) => Điều phải chứng minh

15 tháng 12 2018

2. +) Xét n = 1
\(< =>4^1+15.1-1=18⋮9\)
=> với n=1 , mệnh đề đúng.
+) Giả sử với n=k , mệnh đề đúng, tức là: \(4^k+15k-1⋮9\)
+) Ta phải chứng minh với n = k + 1 mệnh đề cũng đúng, tức là: \(4^{k+1}+15\left(k+1\right)-1⋮9\)
Thật vậy: với n = k + 1, theo giả thiết quy nạp, ta có:
\(4^{k+1}+15\left(k+1\right)-1=4.4^k+15k+15-1\\ =4.4^k+4.15k-4-3.15k+18=4.\left(4^k+15k-1\right)-\left(45k-18\right)⋮9\)=> Điều phải chứng minh.

19 tháng 4 2018

Ta có :\(4n^2+4n=4n\left(n+1\right)\)

Mà n(n+1)\(⋮2\)(n\(\in z\))

\(\Rightarrow4n\left(n+1\right)⋮2.4=8\)

\(\Rightarrow\)dpcm

19 tháng 4 2018

Ta có : (6x+11y) =31(x+6y)-25(x+7y)
Do 6x+11y và 31(x+6y) \(⋮\) 31
=> 25(x+7y) chia hết cho 31

Do (25,31)=1 (2 số nguyên tố cùng nhau)

=> x+7y \(⋮\) 31

29 tháng 10 2015

a) \(n^3-4n=n\left(n^2-4\right)=\left(n-2\right)n\left(n+2\right)\)

vì n chẵn nên đặt n=2k

\(=>\left(2k-2\right).2k.\left(2k+2\right)=8\left(k-1\right)k\left(k+1\right)\)

vì \(\left(k-1\right)k\left(k+1\right)\)là 3 số tn liên tiếp =>chia hết cho 2

=>\(8\left(k-1\right)k\left(k+1\right)\)chia hết cho 16

\(n^3+4n=n^3-4n+8n\)

đặt n=2k

=>\(8\left(k-1\right)k\left(k+1\right)+16k\)

mà \(8\left(k-1\right)k\left(k+1\right)\)chia hết cho 16 nên \(8\left(k-1\right)k\left(k+1\right)+16k\)chia hết cho 16

26 tháng 2 2022

Ta có: n5−n=n(n4−1)=n(n−1)(n+1)(n2+1)

CM n5−n⋮3

Ta thấy n,n+1,n−1 là ba số nguyên liên tiếp nên chắc chắn tồn tại một số chia hết cho 3

⇒n(n−1)(n+1)⋮3⇔n5−n⋮3(1)

CM n5−n⋮5

+) n≡0(mod5)⇒n5−n=n(n−1)(n+1)(n2+1)⋮5

+) n≡1(mod5)⇒n−1≡0(mod5)⇒n5−n=n(n−1)(n+1)(n2+1)⋮5

+) n≡2(mod5)⇒n2≡4(mod5)⇒n2+1≡0(mod5)

⇒n5−n=n(n−1)(n+1)(n2+1)⋮5

+) n≡3(mod5)⇒n2≡9(mod5)⇒n2+1≡0(mod5)

⇒n5−n=n(n−1)(n+1)(n2+1)⋮5

+) n≡4(mod5)⇒n+1≡0(mod5)

⇒n5−n=n(n+1)(n−1)(n2+1)⋮5

Do đó, n5−n⋮5(2)

CM n5−n⋮16

Vì n lẻ nên đặt n=4k+1;4k+3 Khi đó:[n2=16k2+1+8kn2=16k2+9+24k⇒ n2≡1(mod8)

⇒n2−1⋮8

Mà n lẻ nên n2+1⋮2

Do đó n5−n=n(n2−1)(n2+1)⋮16(3)

Từ (1),(2),(3)⇒n5−n⋮(16.3.5=240) (đpcm)

Chúc bạn học tốt!

6 tháng 10 2017

a)Ta có : 74n-1 ~(74)n-1~(...1)n-1~(...1)-(...1)~...0

~74n-1-1 chia hết cho 5

b)92n+1+1~92n.9+1~(92)n.9+1~(...1)n.(...9)+1~(...1).(...9)+(...1)~(...9)+(...1)~...0

~92n+1+1 chia hết cho 10

Ý c làm tương tự ý b

5 tháng 10 2017

a) vì 7^4 có tận cùng bằng 1 mà tận cùng bằng 1 thì nhân số mũ bao nhiêu cũng bằng 1

7 ^14n tận cùng là 1 mà 1 - 1 = 0

tận cùng là 0 chia hết cho 5

vậy n có bằng bao nhiêu thì cũng chia hết cho 5 

b)9^ 2n+1=9.9^ 2n=9.81n

81^ n luôn tận cùng là 1 nên 9.81 n tận cùng là 9=> 9 ^2n+1+1 tận cùng là 0 nên chia hết cho 10

c) 2^ 4n+2=4.16 ^n

16^ n luôn tận cùng là 6 nên 4.6 n tận cùng là 4=> 2 ^4n+2+1 tận cùng là 5 nên chia hết cho 5