B=1^2+2^2+3^2+...+100^2–3850
giải nhanh cho mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 2015^2 - 2014^2
=(2015-2014)(2015+2014)
=1.4029
=4029
b, 1^2 - 2^2 + 3^2 - 4^2 + ......+ 99^2 - 100^2
=(1-2)(1+2)+(3-4)(3+4)+...+(99-100)(99+100)
=-(1+2)-(3+4)-...-(99+100)
=-1-2-3-4-...-99-100
=(-1-100).100:2=-5050
C = 2100 - 299 - 298 -...- 2 - 1
C = 2100 - (299 + 298 +...+ 2 + 1)
Đặt S = 299 + 298 +...+ 2 + 1
2S = 2100 + 299 +...+ 22 + 2
=> 2S - S = 2100 - 1
=> S = 2100 - 1
=> C = 2100 - (2100 - 1)
=> C = 2100 - 2100 + 1 = 1
Vậy C = 1
a) áp dụng hằng đẳng thức a^2 - b^2 = (a-b) .( a+b) ta có:
100^2 -99^2 + 98^2 - 97^2 +...........+2^2 -1^2
=(100-99).(100+99) + (98-97).( 98+97) +..........+ (2-1).(2+1)
=199 + 195 + ..................+ 3
= 25 . (199+3)
=5050
B = 2 + 2² + 2³ + 2⁴ + ... + 2⁹⁹ + 2¹⁰⁰
= 2 + (2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷) + ... + (2⁹⁸ + 2⁹⁹ + 2¹⁰⁰)
= 2 + 2².(1 + 2 + 2²) + 2⁵.(1 + 2 + 2²) + ... + 2⁹⁸.(1 + 2 + 2²)
= 2 + 2².7 + 2⁵.7 + ... + 2⁹⁸.7
= 2 + 7.(2² + 2⁵ + ... + 2⁹⁸)
Ta có:
2 không chia hết cho 7
7.(2² + 2⁵ + ... + 2⁹⁸) ⋮ 7
Vậy B không chia hết cho 7
Dãy số B được tạo thành bằng cách cộng các lũy thừa của số 2 từ 2^1 đến 2^100. Ta có thể viết B như sau:
B = 2^1 + 2^2 + 2^3 + … + 2^99 + 2^100
Chúng ta có thể nhận thấy rằng mỗi số trong dãy B đều chia hết cho 2. Điều này có nghĩa là mỗi số trong dãy B đều có dạng 2^n, với n là một số nguyên không âm.
Nếu chúng ta xem xét các số trong dãy B theo modulo 7 (lấy phần dư khi chia cho 7), chúng ta sẽ thấy một chu kỳ lặp lại. Cụ thể, chu kỳ lặp lại này có độ dài là 6 và gồm các giá trị: 2, 4, 1, 2, 4, 1, …
Vì vậy, để tính tổng của dãy B, chúng ta có thể chia tổng số lũy thừa của 2 (tức là 100) cho 6, lấy phần dư và tìm giá trị tương ứng trong chu kỳ lặp lại. Trong trường hợp này, 100 chia cho 6 dư 4, vì vậy chúng ta sẽ lấy giá trị thứ 4 trong chu kỳ lặp lại, tức là 2.
Vậy, B khi chia cho 7 sẽ có phần dư là 2. Điều này có nghĩa là B không chia hết cho 7.
\(\frac{B}{A}=\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
\(\frac{B}{A}=\frac{1+\left[\frac{1}{99}+1\right]+\left[\frac{2}{98}+1\right]+\left[\frac{3}{97}+1\right]+...+\left[\frac{98}{2}+1\right]}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
\(\frac{B}{A}=\frac{\frac{100}{100}+\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+...+\frac{100}{2}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
\(\frac{B}{A}=\frac{100\cdot\left[\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right]}{\left[\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right]}=100\)
Vậy : \(\frac{B}{A}=100\)
Ta có:
\(B=\frac{1}{99}+\frac{2}{98}+...+\frac{99}{1}\)
\(=\left(1+\frac{1}{99}\right)+\left(1+\frac{2}{98}\right)+...+\left(1+\frac{98}{2}\right)+1\)
\(=\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}+\frac{100}{100}\)
\(=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)
\(=100.A\)
\(\Rightarrow\frac{B}{A}=100\)
a)
Chia ra từng nhóm, mỗi nhóm gồm 4 số, 2 dấu + và 2 dấu - liên tiếp nhau.
(+1+2-3-4)=-4
(+5+6-7-8)=-4
(+9+10-11-12)=-4
...
(+97+98-99-100)=-4
Vậy cho tới số 100, chia được số nhóm là:
100:4=25 nhóm như vậy,
Suy ra, tổng từ +1 đến -100 là:
25.(-4)=-100
Phần còn lại bạn ghi không rỏ nên không biết cộng đến số bao nhiêu?
Theo như trên, thì
S=(-100)+101+102=103
Đáp số:
S=103
b)
Ta thấy : 3 - 1= 2
5 - 3 = 2
7 - 5 = 2
......
99 - 97=2. Như vậy đây là dãy số cách đều, mỗi số hạng cách số liền kề hai đơn vị . Số số hạng là:( 99 - 1 ) : 2 + 1 = 50 ( số hạng).
Ta sắp xếp thành các cặp số ta có số cặp số là:
50:2=25( cặp số )
A=( 1 - 3 )+ ( 5 - 7) + ( 9 - 11) + .....+ ( 97 - 99) +101
= (- 2) + (- 2 )+ (- 2 )+ ....+ (- 2 )+ 101
= - 2 x 2 5 +101
= - 50+101
= 51
a) A = 2 + 22 + 23 + ... + 2100
2A = 22 + 23 + 24 + ... + 2101
2A - A = (22 + 23 + 24 + ... + 2101) - (2 + 22 + 23 + ... + 2100)
A = 2101 - 2
b) B = 1 + 3 + 32 + ... + 3255
3B = 3 + 32 + 33 + ... + 3256
3B - B = (3 + 32 + 33 + ... + 3256) - (1 + 3 + 32 + ... + 3255)
2B = 3256 - 1
B = \(\frac{3^{256}-1}{2}\)
c) C = 1 + 4 + 42 + ... + 4100
4C = 4 + 42 + 43 + ... + 4101
4C - C = (4 + 42 + 43 + ... + 4101) - (1 + 4 + 42 + ... + 4100)
3C = 4101 - 1
C = \(\frac{4^{101}-1}{3}\)
d) D = 1 + 5 + 52 + ... + 51000
5D = 5 + 52 + 53 + ... + 51001
5D - D = (5 + 52 + 53 + ... + 51001) - (1 + 5 + 52 + ... + 51000)
4D = 51001 - 1
D = \(\frac{5^{1001}-1}{4}\)
ai rảnh mà nói. con d.i.e.n
B=1^2+2^2+3^2+...+100^2-3850
B=1+2x2+3x3+...+100x100-3850
B=1+2x(1+1)+3x(2+1)+...+100x(99+1)-3850
B=1+2x1+2+3x2+3+...+100x99+100-3850
Gọi A=1+2+3+...+100 và C=1x2+2x3+...+99x100
Biểu Thức A có:(100-1):1+1=100(số hạng)
Được Chia thành: 100:2=50(cặp số)
Giá Trị mỗi cặp số là:
1+100=2+99=...=101
Do đó A=50x101=5050 (1)
B=1x2+2x3+...+99x100
3B=3x(1x2+2x3+...+99x100)
3B=1x2x3+2x3x3+...+99x100x3
3B=1x2x3+2x3x(4-1)+...+99x100x(101-98)
3B=1x2x3+2x3x4-1x2x3+...+99x100x101-98x99x100
3B=(1x2x3-1x2x3)+(2x3x4-2x3x4)+...+(98x99x100-98x99x100)+99x100x101
3B=99x100x101
B=(99x100x101):3
B=33x100x101
B=3300x101
B=333300 (2)
Từ (1),(2) Ta Có C=A+B-3850
Suy ra C=5050+333300-3850
C=338350-3850
C=334500
Vậy C=334500