Cho tam giác ABC, BC=a, AC=b, AB=c. Chứng minh \(sin\frac{\widehat{A}}{c}\le\frac{a}{b+c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
minh biet lam cau b)
A B C D N M
ke phan giac AD , BM vuong goc AD , CN vuong goc AD
sin \(\frac{A}{2}\) =\(\frac{BM}{AB}=\frac{CN}{AC}=\frac{BM+CN}{AB+AC}\)
ma BM\(\le BD,CN\le CD\Rightarrow BM+CN\le BC\)
=> sin \(\frac{A}{2}\le\frac{BC}{AB+AC}\le\frac{a}{b+c}\)
dau = xay ra <=> AD vuong goc BC => AD la duong phan giac ,la duong cao => tam giac ABC can tai A => AB=AC => b=c
tương tự sin \(\frac{B}{2}\le\frac{b}{a+c};sin\frac{C}{2}\le\frac{c}{a+b}\)
=>\(sin\frac{A}{2}\cdot sin\frac{B}{2}\cdot sin\frac{C}{2}\le\frac{a\cdot b\cdot c}{\left(b+c\right)\left(c+a\right)\left(a+b\right)}\)
ap dung cosi cjo 2 so duong b+c\(\ge2\sqrt{bc};c+a\ge2\sqrt{ac};a+b\ge2\sqrt{ab}\)
=> \(\left(b+c\right)\left(c+a\right)\left(a+b\right)\ge8abc\)
\(\Rightarrow sin\frac{A}{2}\cdot sin\frac{B}{2}\cdot sin\frac{C}{2}\le\frac{abc}{8abc}=\frac{1}{8}\)
dau = xay ra <=> a=b=c hay tam giac ABC deu
Kẽ đường cao AH
\(\Rightarrow\hept{\begin{cases}sinB=\frac{AH}{c}\\sinC=\frac{AH}{b}\end{cases}}\)
\(\Rightarrow AH=c.sinB=b.sinC\)
\(\Rightarrow\frac{b}{sinB}=\frac{c}{sinC}\)
Tương tự ta cũng có
\(\frac{b}{sinB}=\frac{a}{sinA}\)
\(\Rightarrow\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
Kẻ phân giác AD, BK vuông góc với AD.
\(\sin\frac{\widehat{A}}{2}=\sin BAD\)
Xét tam giác AKB vuông tại K, ta có:
\(\sin BAD=\frac{BK}{AK}\left(1\right)\)
Xét tam giác BKD vuông tại K, ta có:
\(BK\Leftarrow BD\)thay vào (1)
\(\sin BAD\Leftarrow\frac{BD}{AB}\left(2\right)\)
Lại có: \(\frac{BD}{CD}=\frac{AB}{AC}\)
\(\Rightarrow\frac{BD}{\left(BD+CD\right)}=\frac{AB}{\left(AB+AC\right)}\)
\(\Rightarrow\frac{BD}{BC}=\frac{AB}{\left(AB+AC\right)}\)
\(\Rightarrow BD=\frac{\left(AB.BC\right)}{\left(AB+AC\right)}\)thay vào (2)
\(\sin BAD\Leftarrow\frac{\left[\frac{\left(AB.BC\right)}{\left(AB+AC\right)}\right]}{AB}\)
\(=\frac{BC}{\left(AB+AC\right)}\left(ĐPCM\right)\)