Cho a,b \(\in\) N và ( 11a + 2b ) ⋮ 3 . Chứng minh rằng ( 10a + 37b ) ⋮ 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để chứng minh rằng (11a + 2b) chia hết cho 19, ta cần chứng minh rằng (10a + 7b) cũng chia hết cho 19. Giả sử (11a + 2b) chia hết cho 19, tức là tồn tại số nguyên k sao cho: 11a + 2b = 19k (1) Nhân cả hai vế của phương trình (1) với 10, ta có: 110a + 20b = 190k (2) Trừ phương trình (2) cho phương trình (1), ta được: (110a + 20b) - (11a + 2b) = 190k - 19k 99a + 18b = 171k Chia cả hai vế của phương trình trên cho 19, ta có: (99a + 18b)/19 = 171k/19 5a + b = 9k Nhân cả hai vế của phương trình trên với 2, ta có: 10a + 2b = 18k Thêm cả hai vế của phương trình trên với (11a + 2b), ta có: (10a + 2b) + (11a + 2b) = 18k + 19k 21a + 4b = 37k Chia cả hai vế của phương trình trên cho 19, ta có: (21a + 4b)/19 = 37k/19 a + (2b/19) = 2k Vì a, b, và k đều là số nguyên, nên (2b/19) cũng phải là số nguyên. Điều này chỉ xảy ra khi (2b/19) là một số nguyên chia hết cho 2. Vậy, ta có thể kết luận rằng nếu (11a + 2b) chia hết cho 19, thì (10a + 7b) cũng chia hết cho 19.
ko chép
2) Xét tổng (11a+2b)+(a+34b) =12a +36b
=> a+34b=(12a+36b)-(11a+2b)
Mà 12a+36b chia hết cho 12 ; 11a+2b chia hết cho 12
=>(12a+36b)-(11a+2b) chia hết cho 12
=>a+34b chia hết cho 12
Ta có : 11(a+34b) - 11a + 2b = 11a + 374b - 11a + 2b = 372b
=> 11a + 2b + 372b = 11(a+34b)
Mà 11a + 2b và 372b đều chia hết cho 12 nên 11(a+34b) cũng chia hết cho 12
Vì (11;12)=1 nên a + 34b chia hết cho 12
Ta có: a + 34b = (12a + 36b) - (11a + 2b)
mà 12a + 36b chia hết cho 12; 11a +2b chia hết cho 12
=> (12a + 36b) - (11a + 2b) chia hết cho 12 => a + 34b chia hết cho 12
Vì 11a + 2b chai hết cho 12 (1)
=>11a+2b+a+34b
=(11a+a)+(2b+34b)
=12a + 36
vì 12a chai hết cho 12 và 36b chia hết cho 12 (2)
Từ (1) và (2) => a+34b chia hết cho 12
c) Giải: 11a + 2b chia hết cho 12 (đề cho) (1)
11a + 2b + a + 34b
= (11a + a) + ( 2b + 34b)
= 12a + 36b
Vì: 12a chia hết cho 12, 36 chia hết cho 12
Suy ra: 12a + 36b chia hết cho 12 (2)
Từ (1) và (2) suy ra : a + 34b chia hết cho 12
Ta có: a + 34b = (12a + 36b) - (11a + 2b)
mà 12a + 36b chia hết cho 12; 11a +2b chia hết cho 12
=> (12a + 36b) - (11a + 2b) chia hết cho 12 => a + 34b chia hết cho 12
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
Ta có: (3a+2b)-2(10a+b) = -17a chia hết cho 17
the bài ra: 3a+2b chia hết cho17 =>2(10a+b) chia hết cho 17
mà 2 không chia hết cho 17 =>10a+b chia hết cho17 => điều phải chứng minh
Ta có:
12(a + 3b) chia hết cho 12
=> 12a + 36b chia hết cho 12
=> (a + 34b) + (11a + 2b) chia hết cho 12
Mà 11a + 2b chia hết cho 12 => a + 34b chia hết cho 12
Để chứng minh rằng (10�+37�)(10a+37b) chia hết cho 3, ta cần sử dụng giả thiết 11�+2�11a+2b chia hết cho 3, tức là:
11�+2�≡0(mod3)11a+2b≡0(mod3)
Bước 1: Xử lý điều kiện ban đầu
Ta có điều kiện là:
11�+2�≡0(mod3)11a+2b≡0(mod3)
Vì 11≡2(mod3)11≡2(mod3), ta có thể thay 11 bằng 2 trong phép toán modulo 3:
2�+2�≡0(mod3)2a+2b≡0(mod3)
Tiếp theo, ta có thể rút gọn vế trái:
2(�+�)≡0(mod3)2(a+b)≡0(mod3)
Do 2 và 3 là các số nguyên tố với nhau, ta có thể chia cả hai vế cho 2:
�+�≡0(mod3)a+b≡0(mod3)
Vậy, �+�a+b chia hết cho 3.
Bước 2: Chứng minh 10�+37�≡0(mod3)10a+37b≡0(mod3)
Bây giờ, ta cần chứng minh 10�+37�≡0(mod3)10a+37b≡0(mod3). Ta sẽ làm điều này bằng cách tính các giá trị của 1010 và 3737 modulo 3:
Vậy, ta có:
10�+37�≡1�+1�≡�+�(mod3)10a+37b≡1a+1b≡a+b(mod3)
Vì từ bước 1, ta biết rằng �+�≡0(mod3)a+b≡0(mod3), nên:
10�+37�≡�+�≡0(mod3)10a+37b≡a+b≡0(mod3)
Kết luận:
Vậy, ta đã chứng minh được rằng 10�+37�10a+37b chia hết cho 3, tức là:
10�+37�≡0(mod3)10a+37b≡0(mod3)
Điều này hoàn thành bài toán.
Ta có: \(\left\{{}\begin{matrix}11a+2b⋮3\\21a+39b⋮3\end{matrix}\right.\)
Do đó: \(21a+39b-11a-2b⋮3\)
=>\(10a+37b⋮3\)