K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2024

Để đơn giản hóa biểu thức �=(�+�)(�−�)+�2A=(x+y)(xy)+y2, ta có thể thực hiện các bước như sau:

Bước 1: Áp dụng hằng đẳng thức

Biểu thức (�+�)(�−�)(x+y)(xy) là một hằng đẳng thức, cụ thể là hằng đẳng thức hiệu bình phương:

(�+�)(�−�)=�2−�2.(x+y)(xy)=x2−y2.

Bước 2: Thay vào biểu thức

Thay (�+�)(�−�)(x+y)(xy) bằng �2−�2x2−y2 vào biểu thức ban đầu:

�=(�+�)(�−�)+�2=�2−�2+�2.A=(x+y)(xy)+y2=x2−y2+y2.

Bước 3: Đơn giản hóa

Lúc này, hai hạng tử −�2−y2 và +�2+y2 sẽ cancel nhau, do đó:

�=�2.A=x2.

Kết quả:

Biểu thức �A sau khi đơn giản hóa là:

�=�2.A=x2.

12 tháng 3 2022

A= (\(\dfrac{1}{2}\)+\(\dfrac{3}{4}\)-\(\dfrac{4}{4}\))X2Y\(\dfrac{1}{4}\)x2y2

7 tháng 11 2023

C. 2

7 tháng 11 2023

Thank ạ ❤

a)

*Biểu thức A

Sửa đề: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(=x^2+2x+y^2-2y-2xy+37\)

\(=x^2+y^2+1+2x-2y-2xy+36\)

\(=\left(x-y+1\right)^2+36\)

Thay x-y=7 vào biểu thức \(A=\left(x-y+1\right)^2+36\), ta được:

\(A=\left(7+1\right)^2+36=8^2+36=100\)

Vậy: 100 là giá trị của biểu thức \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\) tại x-y=7

*Biểu thức B

Ta có: \(B=x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2\)

\(=\left(x^3-3x^2y+3xy^2-y^3\right)-\left(x^2-2xy+y^2\right)\)

\(=\left(x-y\right)^3-\left(x-y\right)^2\)

\(=\left(x-y\right)^2\cdot\left(x-y-1\right)\)

Thay x-y=7 vào biểu thức \(B=\left(x-y\right)^2\cdot\left(x-y-1\right)\), ta được:

\(B=7^2\cdot\left(7-1\right)^2=49-36=13\)

Vậy: giá trị của biểu thức \(B=x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2\) tại x-y=7 là 13

b) Ta có: \(C=x^2+4y^2-2x+10+4xy-4y\)

\(=\left(x^2+4xy+4y^2\right)-\left(2x+4y\right)+10\)

\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

\(=\left(x+2y\right)^2-2\cdot\left(x+2y\right)\cdot1+1+9\)

\(=\left(x+2y-1\right)^2+9\)

Thay x+2y=5 vào biểu thức \(C=\left(x+2y-1\right)^2+9\), ta được:

\(C=\left(5-1\right)^2+9=4^2+9=25\)

Vậy: 25 là giá trị của biểu thức \(C=x^2+4y^2-2x+10+4xy-4y\) tại x+2y=5

24 tháng 11 2018

Ta có: \(A=\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right):\left(x-y\right)+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

\(=\dfrac{\left(x-2\sqrt{xy}+y\right)}{x-y}+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

\(=\dfrac{\sqrt{x}-\sqrt{y}+2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

=1

20 tháng 11 2023

1: \(C=\left(x-\dfrac{4xy}{x+y}+y\right):\left(\dfrac{x}{x+y}+\dfrac{y}{y-x}+\dfrac{2xy}{x^2-y^2}\right)\)

\(=\dfrac{\left(x+y\right)^2-4xy}{x+y}:\left(\dfrac{x}{x+y}-\dfrac{y}{x-y}+\dfrac{2xy}{\left(x-y\right)\left(x+y\right)}\right)\)

\(=\dfrac{x^2+2xy+y^2-4xy}{x+y}:\dfrac{x\left(x-y\right)-y\left(x+y\right)+2xy}{\left(x+y\right)\left(x-y\right)}\)

\(=\dfrac{x^2-2xy+y^2}{x+y}:\dfrac{x^2-xy-xy-y^2+2xy}{\left(x+y\right)\left(x-y\right)}\)

\(=\dfrac{\left(x-y\right)^2}{x+y}\cdot\dfrac{x^2-y^2}{x^2-y^2}=\dfrac{\left(x-y\right)^2}{x+y}\)

2: \(\left(x^2-y^2\right)\cdot C=-8\)

=>\(\left(x-y\right)\left(x+y\right)\cdot\dfrac{\left(x-y\right)^2}{x+y}=-8\)

=>\(\left(x-y\right)^3=-8\)

=>x-y=-2

=>x=y-2

\(M=x^2\left(x+1\right)-y^2\left(y-1\right)-3xy\left(x-y+1\right)+xy\)

\(=\left(y-2\right)^2\left(y-2+1\right)-y^2\left(y-1\right)-3xy\left(-2+1\right)+xy\)

\(=\left(y-1\right)\left[\left(y-2\right)^2-y^2\right]+3xy+xy\)

\(=\left(y-1\right)\left(-4y+4\right)+4xy\)

\(=-4\left(y-1\right)^2+4y\left(y-2\right)\)

\(=-4y^2+8y-4+4y^2-8y\)
=-4

20 tháng 11 2023

Em cảm ơn ạ.

Câu 1: D

Câu 2: C

Câu 3: B

Câu 4: D

11 tháng 3 2022

còn câu 5 6 đâu ạ 

 

6 tháng 12 2023

a) \(B=\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{x\sqrt{x}-y\sqrt{y}}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\left(x,y\ge0;x\ne y\right)\)

\(B=\left[\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}-\dfrac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{x-y}\right]:\dfrac{x-2\sqrt{xy}+y+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

\(B=\left[\left(\sqrt{x}+\sqrt{y}\right)-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right]:\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)

\(B=\left[\left(\sqrt{x}+\sqrt{y}\right)-\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right]:\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)

\(B=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x+\sqrt{xy}+y}\)

\(B=\dfrac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x+\sqrt{xy}+y}\)

\(B=\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x+\sqrt{xy}+y}\)

\(B=\dfrac{\sqrt{xy}}{x+\sqrt{xy}+y}\)

b) Xét tử: 

\(\sqrt{xy}\ge0\forall x,y\) (xác định) (1) 

Xét mẫu: 

\(x+\sqrt{xy}+y\)

\(=\left(\sqrt{x}\right)^2+2\cdot\dfrac{1}{2}\sqrt{y}\cdot\sqrt{x}+\left(\dfrac{1}{2}\sqrt{y}\right)^2+\dfrac{3}{4}y\)

\(=\left(\sqrt{x}+\dfrac{1}{2}\sqrt{y}\right)^2+\dfrac{3}{4}y\)

Mà: \(\left(\sqrt{x}+\dfrac{1}{2}\sqrt{y}\right)^2\ge0\forall x,y\) (xác định), còn: \(\dfrac{3}{4}y\ge0\) vì theo đkxđ thì \(y\ge0\) (2) 

Từ (1) và (2) ⇒ B luôn không âm với mọi x,y (\(B\ge0\)) (đpcm) 

20 tháng 8 2017

a,A=x(x+2)+y(y-2)-2xy+37

A=x2+2x+y2-2y-2xy+37

A=(x2-2xy+y2)+(2x-2y)+37

A=(x-y)2+2(x-y)+37

A=72+2.7+37=49+14+37=100