K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2024

Chúng ta có biểu thức sau:

�=�+�2+�3+⋯+�3024A=a+a2+a3+⋯+a3024

�=�+�5+�9+⋯+�2021B=a+a5+a9+⋯+a2021

a) Xác định tổng A

Biểu thức �A là tổng của các lũy thừa của �a từ �1a1 đến �3024a3024:

�=�+�2+�3+⋯+�3024A=a+a2+a3+⋯+a3024

Đây là một tổng có dạng tổng của các lũy thừa của �a, có thể viết lại như sau:

�=∑�=13024��A=k=13024ak

b) Xác định tổng B

Biểu thức �B là tổng các số có dạng ��ak, trong đó chỉ các lũy thừa của �a có chỉ số chia hết cho 4, tức là:

�=�+�5+�9+⋯+�2021B=a+a5+a9+⋯+a2021

Chúng ta nhận thấy đây là một chuỗi với các lũy thừa của �a có chỉ số dạng 4�+14k+1, từ �=0k=0 đến một giá trị nhất định. Để hiểu rõ hơn, ta có thể viết lại tổng này dưới dạng của một chuỗi:

�=∑�=0504�4�+1B=k=0504a4k+1

c) Chứng minh �A chia hết cho �B

Để chứng minh �A chia hết cho �B, chúng ta cần chỉ ra rằng �A có thể được viết dưới dạng một bội số của �B.

Ta biết rằng mỗi lũy thừa trong �A đều có dạng ��ak với �k chạy từ 1 đến 3024. Còn trong �B, các chỉ số mũ là 4�+14k+1, do đó các mũ này nằm trong một dãy con của các mũ trong �A.

Cụ thể hơn, �B bao gồm các số có dạng �1,�5,�9,…,�2021a1,a5,a9,…,a2021, tức là các mũ theo công thức 4�+14k+1. Mỗi số trong �A đều là một bội số của �1,�5,�9,…a1,a5,a9,…. Do đó, �A có thể được chia cho �B mà không dư.

Kết luận:

Chúng ta đã chứng minh rằng �A chia hết cho �B, tức là �÷�A÷B là một số nguyên.

21 tháng 5 2020

ewewdscx

Giả sử tất cả các số đã cho đều lẻ

=>Quy đồng, ta được:

\(A=\dfrac{\left(a_2\cdot a_3\cdot...\cdot a_{2022}\right)+\left(a_1\cdot a_3\cdot...\cdot a_{2021}\cdot a_{2022}\right)+...+\left(a_1\cdot a_2\cdot...\cdot a_{2021}\right)}{a_1\cdot a_2\cdot...\cdot a_{2022}}=1\)

Tử có 2022 số hạng, mẫu là số lẻ

=>A là số chẵn khác 1

=>Trái GT

=>Phải có ít nhất 1 số là số chẵn

15 tháng 5 2022

`1/[2^2]+1/[3^2]+1/[4^2]+....+1/[2021^2] < 1/[1.2]+1/[2.3]+1/[3.4]+....+1/[2020.2021]`

  `=>A < 1-1/2+1/2-1/3+1/3-1/4+....+1/2020-1/2021`

  `=>A < 1-1/2021`

  `=>A < 2020/2021`

 Mà `2020/2021 < 1`

  `=>A < 1`

 

15 tháng 5 2022

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2021^2}< 1\)

\(A=\dfrac{1}{\left(2+3+4+...+2021\right)^2}< 1\)

\(A=\dfrac{1}{\left(2021-2+1\right)^2}< 1\)

\(A=\dfrac{1}{\left(2020\right)^2}< 1\)

\(A=\dfrac{1}{2020\cdot2020}< 1\)

 

\(A=\dfrac{1}{2020}< 1\)

31 tháng 10 2020

giúp mk với ạ ai giải nhanh nất và đúng mk cho 5 sao

31 tháng 10 2020

bạn tải app : qanda , bạn chụp hình thì bất kì bài nào  ''Qanda'' cũng giải đc nhé !

4 tháng 4 2021

\(A=5+4^2+...+4^{2021}\\ A=4^0+4^1+...+4^{2021}\\ 4A=4^1+4^2+...+4^{2022}\\ 4A-A=\left(4^1+4^2+...+4^{2022}\right)-\left(4^0+4^1+...+4^{2021}\right)\\ 3A=4^{2022}-1\\ 3A+1=4^{2022}⋮4^{2021}\)

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn. Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao? Bài 4. Cho các số nguyên...
Đọc tiếp

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x

 

Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.

 

Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?

 

Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn

 

Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0



Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|


Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|


Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1


Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2


Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4


Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2

0
Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn. Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao? Bài 4. Cho các số nguyên...
Đọc tiếp

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x

 

Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.

 

Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?

 

Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn

 

Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0



Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|


Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|


Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1


Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2


Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4


Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2

0