K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2017

nhiều nick  thế 

3 tháng 5 2019

12 tháng 2 2022

 như cc

31 tháng 12 2017

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

+)Theo giả thiết ta có: AB = AC và BD = CE nên:

AB + BD = AC + CE hay AD = AE.

+) Xét ΔABE và ΔACD có:

AB = AC (gt)

∠A chung

AE = AD (chứng minh trên)

⇒ ΔABE = ΔACD (c.g.c)

⇒ BE = CD (2 cạnh tương ứng) (1)

và ∠ABE = ∠ACD (2 góc tương ứng) (2)

Tam giác ABC cân nên ∠B1 = ∠C1. (3)

Từ (2) và (3) ⇒ ∠ABE - ∠B1 = ∠ACD - ∠C1, tức là ∠B2 = ∠C2.

⇒ ΔBIC cân tại I ⇒ IB = IC. (4)

Từ (1) và (4) suy ra BE - IB = CD – IC, tức là IE = ID.

21 tháng 1 2022

a. Xét △ABM và △DCM:

\(AM=MD\left(gt\right)\)

\(\hat{AMB}=\hat{DMC}\) (đối đỉnh)

\(BM=MC\left(gt\right)\)

\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)

 

b. Từ a. => \(\hat{MCD}=\hat{MBA}\) (2 góc tương ứng). Mà hai góc này ở vị trí so le trong

\(\Rightarrow CD\text{ // }AB\left(a\right)\)

 

c. Xét △CIK và △AIB:

\(AI=IC\left(gt\right)\)

\(\hat{AIB}=\hat{CIK}\) (đối đỉnh)

\(BI=IK\left(gt\right)\)

\(\Rightarrow\Delta CIK=\Delta AIB\left(c.g.c\right)\Rightarrow\hat{ICK}=\hat{IAB}\). Mà hai góc ở vị trí so le trong

\(\Rightarrow AB\text{ // }CK\left(b\right)\)

Từ (a) và (b), theo tiên đề Ơ-clit \(\Rightarrow AB\text{ // }DK\)

Vậy: D, C, K thẳng hàng (đpcm).

21 tháng 1 2022

a) Xét tam giác ABM và tam giác DCM:

BM = CM (M là trung điểm BC).

\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh).

MA = MD (cmt).

\(\Rightarrow\) Tam giác ABM = Tam giác DCM (c - g - c).

b) Ta có: \(\widehat{BAM}=\widehat{CDM}\) (Tam giác ABM = Tam giác DCM).

Mà 2 góc này ở vị trí so le trong.

\(\Rightarrow\) CD // AB (dhnb).

c) Xét tứ giác AKCB có:

I là trung điểm AC (gt).

I là trung điểm BK (IB = IK).

\(\Rightarrow\) Tứ giác AKCB là hình bình hành (dhnb).

\(\Rightarrow\) CK // AB (Tính chất hình bình hành).

Mà CD // AB (cmt).

\(\Rightarrow\) D, C, K thẳng hàng.

10 tháng 3 2021

Ktra đề coi có thiếu dữ kiện ko e nhé

10 tháng 3 2021

Dạ anh

 

25 tháng 2 2018

a, đơn giản ta CM được hai tam giác DCB và EBC bằng nhau => góc EBC = góc DCB => tam giác BIC cân tại I => IB = IC (đpcm)

tương tự chứng minh được hai tam giác DIB và EIC bằng nhau => ID = IE (đpcm)

b, ta có tam giác DAE cân tại A => 2góc D = 180-góc A

             tam giác BAC cân tại A => 2 góc B = 180o - góc A

=> góc D = góc B  => BC// DE (đpcm)

c, Nối AM => AM vừa là trung tuyến vừa là đường trung trựctại M của BC

    Nối IM => IM vừ là trung tuyến vừa là đường trung trực tại M của BC

=> AM và IM cùng nằm trên đường trung trực của BC tại M hay 3 điểm A,M,I thẳng hàng

25 tháng 2 2018

a) Tam giác ABC cân tại A suy ra \(\widehat{B_1}=\widehat{C_1}\)

Xét tam giác ABM và tam giác ACM có :

AB = AC ( tam giác ABC cân tại A )

\(\widehat{B_1}=\widehat{C_1}\left(cmt\right)\)

BM = CM ( gt )

\(\Rightarrow\Delta ABM=\Delta ACM\left(c-g-c\right)\)

\(\Rightarrow\widehat{A_1}=\widehat{A_2}\)

Xét tam giác ABI và tam giác ACI có :

AI chung

AB = AC ( tam giác ABC cân tại A )

\(\widehat{A_1}=\widehat{A_2}\left(cmt\right)\)

\(\Rightarrow\Delta ABI=\Delta ACI\left(c-g-c\right)\)

\(\Rightarrow IB=IC\)

Vì AD = AB + BD

AE = AC + BC 

Mà AB = AC ( tam giác ABC cân tại A )

DB = EC ( gt )

\(\Rightarrow AD=AE\)

Xét tam giác ADI và tam giác AEI có :

AI chung

AD = AE ( cmt )

\(\widehat{A_1}=\widehat{A_2}\left(cmt\right)\)

\(\Rightarrow\Delta ADI=\Delta AEI\left(c-g-c\right)\)

\(\Rightarrow DI=EI\)hay ID = IE 

b) Vì tam giác ABC cân tại A ( gt )

\(\Rightarrow\)\(\widehat{B_1}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)

Vì tam giác ADE có AD = AE ( cmt )

Suy ra tam giác ADE cân 

\(\Rightarrow\widehat{D}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)

Từ ( 1 ) và ( 2 ) suy ra \(\widehat{B_1}=\widehat{D}\)mà hai góc này ở vị trí đồng vị

Suy ra BC // DE 

c) Ta có : \(\widehat{M_2}=\widehat{M_1}\left(\Delta ABM=\Delta ACM\right)\left(cmt\right)\)

Mà \(\widehat{M_1}+\widehat{M_2}=180^o\)( 2 góc này ở vị trí kề bù )

\(\widehat{M_2}=\widehat{M_3}\)( đối đỉnh )

\(\Rightarrow\widehat{M_1}+\widehat{M_3}=180^o\)

\(\Rightarrow\)A ; M ; I thẳng hàng 

a: Xét ΔABK và ΔACK có

AB=AC

BK=CK

AK chung

Do đó: ΔABK=ΔACK

a: Xét ΔABM và ΔACM có

AB=AC

góc BAM=góc CAM

AM chung

=>ΔABM=ΔACM

=>MB=MC

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

=>ABCD là hình bình hành

=>AB//CD