Tìm cặp số tự nhiên x,y biết: 2xy+4x+3y=9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Do 2x+1 chia hết 2x+1 .
=> (2x+1)y chia hết cho 2x+1
Mà (2x+1)y=4x+7
=>4x+7 chia het cho 2x+1
=>2(2x+1)+5 chia hết cho 2x+1
Mà x \(\in\)N ->2x+1\(\in\)N
=>2x+1\(\in\)Ư(5)=(1;5)
=>x\(\in\)(0;2)
Nếu x = 0 => y=7
Nếu x = 2 => 5y=15->y=3
Vậy x=0;y=7
x=2;y=3
6xy+4x-3y=8
=> 6xy -3y=8-4x
=>3y(2x-1)= -2(2x-1) +6
=>(2x-1)(3y+2)=6
mà x,y thuộc Z =>(2x-1),(3y+2) thuộc Z =>(2x-1),(3y+2) thuộc U(6) xong giải ra bình thường nhé mấy câu sau tương tự
\(2xy-6x+y=13\)
\(2x\left(y-3\right)+y-3=10\)
\(\left(2x+1\right)\left(y-3\right)=10\)
=> \(\left[{}\begin{matrix}\left\{{}\begin{matrix}2x+1=10\\y-3=1\end{matrix}\right.\\\left\{{}\begin{matrix}2x+1=1\\y-3=10\end{matrix}\right.\\\left\{{}\begin{matrix}2x+1=2\\y-3=5\end{matrix}\right.\\\left\{{}\begin{matrix}2x+1=5\\y-3=2\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(x,y\right)=\left\{\left(0,13\right);\left(2,5\right)\right\}\)
Trả lời:
Ta có: 5x - 3y = 2xy - 11
<=> 2 ( 5x - 3y ) = 2 ( 2xy - 11 )
<=> 10x - 6y = 4xy - 22
<=> 10x - 6y = 4xy - 15 - 7
<=> 10x - 6y - 4xy + 15 = - 7
<=> - ( 4xy - 10x + 6y - 15 ) = - 7
<=> 4xy - 10x + 6y - 15 = 7
<=> ( 4xy - 10x ) + ( 6y - 15 ) = 7
<=> 2x ( 2y - 5 ) + 3 ( 2y - 5 ) = 7
<=> ( 2x + 3 ) ( 2y - 5 ) = 7
=> 2x + 3 thuộc ước của 7; 2y - 5 thuộc ước của 7
Mà Ư(7) = { 1; - 1; 7; - 7 }
nên ta có bảng sau:
2x+3 | 1 | -1 | 7 | -7 |
2y-5 | 7 | -7 | 1 | -1 |
x | -1 | -2 | 2 | -5 |
y | 6 | -1 | 3 | 2 |
Mà x, y là số tự nhiên nên cặp ( x ; y ) thỏa mãn đề bài là: ( 2 ; 3 )
Vậy x = 2; y = 3
a, (3 - \(x\))(4y + 1) = 20
Ư(20) = { -20; -10; -5; -4; -2; -1; 1; 2; 4; 5; 10; 20}
Lập bảng ta có:
\(3-x\) | -20 | -10 | -5 | -4 | -2 | -1 | 1 | 2 | 4 | 5 | 10 | 20 |
\(x\) | 23 | 13 | 8 | 7 | 5 | 4 | 2 | 1 | -1 | -2 | -7 | -17 |
4\(y\) + 1 | -1 | -2 | -4 | -5 | -10 | -20 | 20 | 10 | 5 | 4 | 2 | 1 |
\(y\) | -1/2 | -3/4 | -5/4 | -6/4 | -11/4 | -21/4 | 19/4 | 9/4 | 1 | 3/4 | 1/4 | 0 |
Vậy các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) =(-1; 1); (-17; 0)
b, \(x\left(y+2\right)\)+ 2\(y\) = 6
\(x\) = \(\dfrac{6-2y}{y+2}\)
\(x\in\) Z ⇔ 6 - \(2y⋮\) \(y\) + 2 ⇒-(2y + 4) +10 ⋮ \(y\) + 2 ⇒ -2(\(y\)+2) +10 ⋮ \(y\)+2
⇒ 10 ⋮ \(y\) + 2
Ư(10) = { -10; -5; -2; -1; 1; 2; 5; 10}
Lập bảng ta có:
\(y+2\) | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
\(y\) | -12 | -7 | -4 | -3 | -1 | 0 | 3 | 8 |
\(x=\) \(\dfrac{6-2y}{y+2}\) | -3 | -4 | -7 | -12 | 8 | 3 | 0 | -1 |
Theo bảng trên ta có các cặp \(x;y\)
nguyên thỏa mãn đề bài lần lượt là:
(\(x;y\) ) =(-3; -12); (-4; -7); (-12; -3); (8; -1); (3; 0); (0;3 (-1; 8)
a.
\(4x-8⋮2x+3\Rightarrow4x+6-14⋮2x+3\)
\(\Rightarrow2\left(2x+3\right)-14⋮2x+3\)
\(\Rightarrow14⋮2x+3\)
\(\Rightarrow2x+3=Ư\left(14\right)\)
Do \(2x+3\) luôn lẻ khi x nguyên nên ta chỉ cần xét các ước lẻ của 14
\(\Rightarrow2x+3=\left\{-7;-1;1;7\right\}\)
\(\Rightarrow x=\left\{-5;-2;-1;2\right\}\)
b.
\(2xy+4x-3y=17\)
\(\Leftrightarrow2xy-3y+4x-6=17-6\)
\(\Leftrightarrow y\left(2x-3\right)+2\left(2x-3\right)=11\)
\(\Leftrightarrow\left(2x-3\right)\left(y+2\right)=11\)
Bảng giá trị:
2x-3 | -11 | -1 | 1 | 11 |
y+2 | -1 | -11 | 11 | 1 |
x | -4 | 1 | 2 | 7 |
y | -3 | -13 | 9 | -1 |
Vậy \(\left(x;y\right)=\left(-4;-3\right);\left(1;-13\right);\left(2;9\right);\left(7;-1\right)\)
2x .(2-y) +y=0
-2x.(y-2)+y=0
-2x.(y-2)+y-2=-2
(-2x+1)(y-2)=-2
(1-2x)(y-2)=-2
còn lại bn tự tính nhé, xảy ra 2 TH
4x - 2xy + y = 0
<=> y = 2xy - 4x
<=> y = 2x(y - 2)
<=> x = \(\frac{y}{2\left(y-2\right)}=\frac{y}{2y-4}\)
Vì x là số tự nhiên nên : \(\frac{y}{2y-4}\) thuộc N
=>
1. xy + 5x + 5y = 92
=> (xy + 5x) + (5y + 25) = 92 + 25
=> x(y + 5) + 5(y + 5) = 117
=> (x + 5)(y + 5) = 117
=> x + 5 \(\in\)Ư(117) = {-1;1;-3;3;-9;9;-13;13;-39;39;-117;117}
Mà x >= 0 => x + 5 >= 5
=> x + 5 \(\in\){9;13;39;117}
Ta có bảng sau:
x + 5 | 9 | 13 | 39 | 117 |
x | 4 | 8 | 34 | 112 |
y + 5 | 13 | 9 | 3 | 1 |
y | 8 | 4 | -2 (loại) | -4 (loại) |
Vậy; (x;y) \(\in\){(4;8);(8;4)}
\(2xy-3y+3x=7\)
\(\Leftrightarrow4xy-6y +6x=14\)
\(\Leftrightarrow2y\left(2x-3\right)+6x-9=5\)
\(\Leftrightarrow2y\left(2x-3\right)+3\left(2x-3\right)=5\)
\(\Leftrightarrow\left(2x-3\right)\left(2y+3\right)=5\)
Vì \(x,y\in N\)\(\Rightarrow2y+3\ge3\)\(\Rightarrow2y+3\inƯ\left(5\right)=\left\{5\right\}\)
\(\Rightarrow2y+3=5\Leftrightarrow y=1\)
\(\Rightarrow\left(2x-3\right)\left(2+3\right)=5\)
\(\Leftrightarrow2x-3=1\)
\(\Leftrightarrow x=2\)
`2xy+4x+3y=9`
`=>2x(y+2)+(3y+6)=15`
`=>2x(y+2)+3(y+2)=15`
`=>(2x+3)(y+2)=15`
`x,y` là STN `=>2x+3∈Ư(15)={1;-1;3;-3;5;-5;15;-15}
Vì `2x+3` là số lẻ và `2x+3>=3` với x là STN
`=>2x+3=5` và `2x+3=15`
Với `2x+3=5=>x=1` thì `y+2=3`
`=>x=y=1`
Với `2x+3=15=>x=6` thì `y+2=1=>y=-1` (loại)
Vậy: `x=y=1`