Chứng minh rằng với mọi số tự nhiên n thì:
a, 74n - 1 chia hết cho 5 b, 24n+2 + 1chia hết cho 5 c, 24n+1 + 3 chia hết cho 5
d, 92n+1 + 1 chia hết cho 10 e, 1+4+42+43+...+459chia hết cho 105
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 24n + 1 + 3 = 24n . 2 + 3 = (...6) . 2 + 3 = (....2) + 3 = (....5) ⋮ 5
b) 24n + 2 + 1 = 24n . 22 + 1 = (...6) . 4 + 1 = (...4) + 1 = (....5) ⋮ 5
c) 92n+1 + 1 = 92n . 9 + 1 = (...1) . 9 + 1 = (....9) + 1 = (....0) ⋮ 10
Hok tốt
b) 34n + 1 + 2 = 34n . 3 + 2 = (...1) . 3 + 2 = (....3) + 2 = (....5) ⋮ 5
c) 24n + 1 + 3 = 24n . 2 + 3 = (...6) . 2 + 3 = (....2) + 3 = (....5) ⋮ 5
d) 24n + 2 + 1 = 24n . 22 + 1 = (...6) . 4 + 1 = (...4) + 1 = (....5) ⋮ 5
e) 92n+1 + 1 = 92n . 9 + 1 = (...1) . 9 + 1 = (....9) + 1 = (....0) ⋮ 10
Hok tốt
viết lại đề cho chuẩn
nhìn mình chẳng hiểu n là số mũ hay là nhân, hay có gạch trên đầu...
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
a) Ta có:
(5^2n+1) + (2^n+4) + (2^n+1) = (25^n).5 - 5.(2^n) + (2^n).( 5 + 2^4 +2) = 5.( 25^n - 2^n ) + 23.2^n chia hết cho 23.
Lời giải:
a)
\(5^{2n+1}+2^{n+4}+2^{n+1}=5.25^n+16.2^n+2.2^n\)
\(\equiv 5.2^n+16.2^n+2.2^n\pmod {23}\)
\(\equiv 23.2^n\equiv 0\pmod {23}\)
Ta có đpcm.
b)
\(2^{2n+2}+24n+14\) hiển nhiên chia hết cho $2(1)$
Mặt khác:
Nếu $n=3k+1$:
$2^{2n+2}+24n+14=2^{6k+4}+72k+38$
$=16.2^{6k}+72k+38\equiv 16+72k+38=54+72k\equiv 0\pmod 9$
Nếu $n=3k$:
$2^{2n+2}+24n+14=2^{6k+2}+72k+14=4.2^{6k}+72k+14$
$\equiv 4+72k+14=18+72k\equiv 0\pmod 9$
Nếu $n=3k+2$:
$2^{2n+2}+24n+14=2^{6k+6}+72k+62\equiv 1+72k+62$
$\equiv 63+72k\equiv 0\pmod 9$
Vậy tóm lại $2^{2n+2}+24n+14$ chia hết cho $9$ (2)
Từ $(1);(2)\Rightarrow 2^{2n+2}+24n+14\vdots 18$ (đpcm)
kho....................wa..................troi.......................thi.....................ret.................lanh................wa..................tich............................ung.........................ho..............minh......................cho....................do....................lanh