4^x + 8 = 3^y gấp lắm rồi ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Theo yêu cầu của bạn thì mình chỉ làm bài 2:)
Bài 2:a)\(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
\(\Leftrightarrow2\left(a^4+b^4\right)\ge a^4+b^4+ab^3+a^3b\)
\(\Leftrightarrow a^4+b^4-ab\left(a^2+b^2\right)\ge0\)
\(\Leftrightarrow\left(a^4-a^3b\right)-\left(ab^3-b^4\right)=a^3\left(a-b\right)-b^3\left(a-b\right)\)
\(=\left(a-b\right)\left(a^3-b^3\right)=\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(đúng)
Đẳng thức xảy ra khi a = b
b) \(a^4+b^4-ab\left(a^2+b^2\right)\ge0\)
\(\Leftrightarrow\left(a^4-a^3b\right)-\left(ab^3-b^4\right)=a^3\left(a-b\right)-b^3\left(a-b\right)\)
\(=\left(a-b\right)\left(a^3-b^3\right)=\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(đúng)
Đẳng thức xảy ra khi a = b
True?
1. Phân tích đa thức thành nhân tử:
a) x3 + y3 + 6xy - 8
⇔(x+y)\(^3\) -8-3xy(x+y)+6xy
⇔(x+y)\(^3\) -2\(^3\) -3xy(x+y)+3xy.2
⇔(x+y-2)[(x+y)\(^2\)+2(x+y)+4]-3xy(x+y-2)
⇔(x+y-2)(x\(^2\)+2xy+y\(^2\)+2x+2y+4-3xy)
⇔(x+y-2)(x\(^2\)+y\(^2\)-xy+2x+2y+4)
b) x3 + y3 + 3(x2 + y2) + 4(x+y) + 4
⇔( x\(^3\)+3x\(^2\)+3x+1)+(y\(^3\)+3y\(^2\)+3y+1)+(x+y+2)
⇔[(x+1)\(^3\)+(y+1)\(^3\)]+(x+y+2)
⇔(x+y+2)[(x+1)\(^2\)+(x+1)(y+1)+(y+1)\(^2\)]+(x+y+2)
⇔(x+y+2)[(x+1)\(^2\)+(x+1)(y+1)+(y+1)\(^2\)+1]
⇔(x+y+2)(x\(^2\)+y\(^2\)+3x+3y+xy+3)![](https://rs.olm.vn/images/avt/0.png?1311)
\(=\dfrac{1}{8\cdot9\cdot10000}=\dfrac{1}{A^{9993}_{10000}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{1}{4}+\dfrac{x}{12}=\dfrac{8}{12}\)
\(\dfrac{3}{12}+\dfrac{x}{12}=\dfrac{8}{12}\)
\(\dfrac{3+x}{12}=\dfrac{8}{12}\)
\(\dfrac{x+3}{12}=\dfrac{8}{12}\)
\(=\)\(\dfrac{5}{12}\)
Vậy \(x=5\).
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(D=-x^2-y^2+xy+2x+2y\)
\(\Rightarrow D=-\dfrac{x^2}{2}+xy-\dfrac{y^2}{2}-\dfrac{x^2}{2}+2x-\dfrac{y^2}{2}+2y\)
\(\Rightarrow D=-\left(\dfrac{x^2}{2}-xy+\dfrac{y^2}{2}\right)-\left(\dfrac{x^2}{2}-2x\right)-\left(\dfrac{y^2}{2}-2y\right)\)
\(\Rightarrow D=-\left(\dfrac{x^2}{2}-2.\dfrac{x}{\sqrt[]{2}}.\dfrac{y}{\sqrt[]{2}}+\dfrac{y^2}{2}\right)-\left(\dfrac{x^2}{2}-2.\dfrac{x}{\sqrt[]{2}}.\sqrt[]{2}+2\right)-\left(\dfrac{y^2}{2}-2.\dfrac{y}{\sqrt[]{2}}.\sqrt[]{2}+2\right)+2+2\)
\(\Rightarrow D=-\left(\dfrac{x}{\sqrt[]{2}}-\dfrac{y}{\sqrt[]{2}}\right)^2-\left(\dfrac{x}{\sqrt[]{2}}-\sqrt[]{2}\right)^2-\left(\dfrac{y}{\sqrt[]{2}}-\sqrt[]{2}\right)^2+4\)
mà \(\left\{{}\begin{matrix}-\left(\dfrac{x}{\sqrt[]{2}}-\dfrac{y}{\sqrt[]{2}}\right)^2\le0,\forall x;y\\-\left(\dfrac{x}{\sqrt[]{2}}-\sqrt[]{2}\right)^2\le0,\forall x\\-\left(\dfrac{y}{\sqrt[]{2}}-\sqrt[]{2}\right)^2\le0,\forall y\end{matrix}\right.\)
\(\Rightarrow D=-\left(\dfrac{x}{\sqrt[]{2}}-\dfrac{y}{\sqrt[]{2}}\right)^2-\left(\dfrac{x}{\sqrt[]{2}}-\sqrt[]{2}\right)^2-\left(\dfrac{y}{\sqrt[]{2}}-\sqrt[]{2}\right)^2+4\le4\)
\(\Rightarrow GTLN\left(D\right)=4\left(tạix=y=2\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
h) x/y = 9/10 ⇒ y/10 = x/9
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
y/10 = x/9 = (y - x)/(10 - 9) = 120/1 = 120
*) x/9 = 120 ⇒ x = 120.9 = 1080
*) y/10 = 120 ⇒ y = 120.10 = 1200
Vậy x = 1080; y = 1200
k) x/y = 3/4
⇒ x/3 = y/4
⇒ 5y/20 = 3x/9
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
5y/20 = 3x/9 = (5y - 3x)/(20 - 9) = 33/11 = 3
*) 3x/9 = 3 ⇒ x = 3.9:3 = 9
*) 5y/20 = 3 ⇒ y = 3.20:5 = 12
Vậy x = 9; y = 12
4x + 8 = 3y
⇒ 3y - 4x = 8
Vì 3y luôn là số lẻ
4x luôn là số chẵn
Mà lẻ - chẵn = lẻ
Lại có 8 là số chẵn
⇒ lẻ - chẵn = 8 (vô lí)
⇒ 4x là số lẻ
⇒ 4x = 1
Hay 4x = 40
⇒ x = 0 ϵ N
Thay x = 0, ta được:
40 + 8 = 3y
⇒ 3y = 9
Hay 3y = 32
⇒ y = 2 ϵ N
Vậy (x;y) = (0; 2)