K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2024

4x + 8 = 3y

⇒ 3y - 4x = 8

  Vì 3y luôn là số lẻ

       4x luôn là số chẵn

Mà lẻ - chẵn = lẻ

Lại có 8 là số chẵn

⇒ lẻ - chẵn = 8 (vô lí)

⇒ 4x là số lẻ

⇒ 4x = 1

Hay 4x = 40

⇒ x = 0 ϵ N

Thay x = 0, ta được:

40 + 8 = 3y

⇒ 3y = 9

Hay 3y = 32

⇒ y = 2 ϵ N

Vậy (x;y) = (0; 2)

27 tháng 9 2019

Theo yêu cầu của bạn thì mình chỉ làm bài 2:)

Bài 2:a)\(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)

\(\Leftrightarrow2\left(a^4+b^4\right)\ge a^4+b^4+ab^3+a^3b\)

\(\Leftrightarrow a^4+b^4-ab\left(a^2+b^2\right)\ge0\)

\(\Leftrightarrow\left(a^4-a^3b\right)-\left(ab^3-b^4\right)=a^3\left(a-b\right)-b^3\left(a-b\right)\)

\(=\left(a-b\right)\left(a^3-b^3\right)=\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(đúng)

Đẳng thức xảy ra khi a = b

b) \(a^4+b^4-ab\left(a^2+b^2\right)\ge0\)

\(\Leftrightarrow\left(a^4-a^3b\right)-\left(ab^3-b^4\right)=a^3\left(a-b\right)-b^3\left(a-b\right)\)

\(=\left(a-b\right)\left(a^3-b^3\right)=\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(đúng)

Đẳng thức xảy ra khi a = b

True?

27 tháng 9 2019

1. Phân tích đa thức thành nhân tử:

a) x3 + y3 + 6xy - 8

⇔(x+y)\(^3\) -8-3xy(x+y)+6xy

⇔(x+y)\(^3\) -2\(^3\) -3xy(x+y)+3xy.2

⇔(x+y-2)[(x+y)\(^2\)+2(x+y)+4]-3xy(x+y-2)

⇔(x+y-2)(x\(^2\)+2xy+y\(^2\)+2x+2y+4-3xy)

⇔(x+y-2)(x\(^2\)+y\(^2\)-xy+2x+2y+4)

b) x3 + y3 + 3(x2 + y2) + 4(x+y) + 4

⇔( x\(^3\)+3x\(^2\)+3x+1)+(y\(^3\)+3y\(^2\)+3y+1)+(x+y+2)

⇔[(x+1)\(^3\)+(y+1)\(^3\)]+(x+y+2)

⇔(x+y+2)[(x+1)\(^2\)+(x+1)(y+1)+(y+1)\(^2\)]+(x+y+2)

⇔(x+y+2)[(x+1)\(^2\)+(x+1)(y+1)+(y+1)\(^2\)+1]

⇔(x+y+2)(x\(^2\)+y\(^2\)+3x+3y+xy+3)

\(=\dfrac{1}{8\cdot9\cdot10000}=\dfrac{1}{A^{9993}_{10000}}\)

17 tháng 4 2022

\(\dfrac{1}{4}+\dfrac{x}{12}=\dfrac{8}{12}\)

\(\dfrac{3}{12}+\dfrac{x}{12}=\dfrac{8}{12}\)

\(\dfrac{3+x}{12}=\dfrac{8}{12}\)

\(\dfrac{x+3}{12}=\dfrac{8}{12}\)

\(=\)\(\dfrac{5}{12}\)

Vậy \(x=5\).

17 tháng 4 2022

x=5 nha

tick nhó^^

 

16 tháng 8 2023

ko

16 tháng 8 2023

tên bạn kì v

16 tháng 8 2023

\(D=-x^2-y^2+xy+2x+2y\)

\(\Rightarrow D=-\dfrac{x^2}{2}+xy-\dfrac{y^2}{2}-\dfrac{x^2}{2}+2x-\dfrac{y^2}{2}+2y\)

\(\Rightarrow D=-\left(\dfrac{x^2}{2}-xy+\dfrac{y^2}{2}\right)-\left(\dfrac{x^2}{2}-2x\right)-\left(\dfrac{y^2}{2}-2y\right)\)

\(\Rightarrow D=-\left(\dfrac{x^2}{2}-2.\dfrac{x}{\sqrt[]{2}}.\dfrac{y}{\sqrt[]{2}}+\dfrac{y^2}{2}\right)-\left(\dfrac{x^2}{2}-2.\dfrac{x}{\sqrt[]{2}}.\sqrt[]{2}+2\right)-\left(\dfrac{y^2}{2}-2.\dfrac{y}{\sqrt[]{2}}.\sqrt[]{2}+2\right)+2+2\)

\(\Rightarrow D=-\left(\dfrac{x}{\sqrt[]{2}}-\dfrac{y}{\sqrt[]{2}}\right)^2-\left(\dfrac{x}{\sqrt[]{2}}-\sqrt[]{2}\right)^2-\left(\dfrac{y}{\sqrt[]{2}}-\sqrt[]{2}\right)^2+4\)

mà \(\left\{{}\begin{matrix}-\left(\dfrac{x}{\sqrt[]{2}}-\dfrac{y}{\sqrt[]{2}}\right)^2\le0,\forall x;y\\-\left(\dfrac{x}{\sqrt[]{2}}-\sqrt[]{2}\right)^2\le0,\forall x\\-\left(\dfrac{y}{\sqrt[]{2}}-\sqrt[]{2}\right)^2\le0,\forall y\end{matrix}\right.\)

\(\Rightarrow D=-\left(\dfrac{x}{\sqrt[]{2}}-\dfrac{y}{\sqrt[]{2}}\right)^2-\left(\dfrac{x}{\sqrt[]{2}}-\sqrt[]{2}\right)^2-\left(\dfrac{y}{\sqrt[]{2}}-\sqrt[]{2}\right)^2+4\le4\)

\(\Rightarrow GTLN\left(D\right)=4\left(tạix=y=2\right)\)

10 tháng 10 2023

h) x/y = 9/10 ⇒  y/10 = x/9

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

y/10 = x/9 = (y - x)/(10 - 9) = 120/1 = 120

*) x/9 = 120 ⇒ x = 120.9 = 1080

*) y/10 = 120 ⇒ y = 120.10 = 1200

Vậy x = 1080; y = 1200

k) x/y = 3/4

⇒ x/3 = y/4

⇒ 5y/20 = 3x/9

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

5y/20 = 3x/9 = (5y - 3x)/(20 - 9) = 33/11 = 3

*) 3x/9 = 3 ⇒ x = 3.9:3 = 9

*) 5y/20 = 3 ⇒ y = 3.20:5 = 12

Vậy x = 9; y = 12