101944537 có phải là số chính phương hay không ? Nhanh vs đúng thì mình tick luôn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số chính phương là số tự nhiên có mũ chẵn, mà đề bài lại cho số mũ lẻ → đây không phải số chính phương
Số chính phương phải là bình phương của 1 số tự nhiên. Trường hợp này thì không phải bạn nhé! Vì \(2001^{2001}\ne2001^2\)nhé!
Câu trả lời hay nhất: 4014025 = 25.160561
Muốn 401025 chính phương thì 160561 phải là số chính phương.
400^2 = 160000
401^2 = 160801 Mà 160000 < 160561 < 160801
=> 160561 ko phải là số chính phương
k cho mk nha
b) Ta có: A = \(10^{2012}+10^{2011}+10^{2010}+10^{2009}+8\) \(=\left(.....0\right)+\left(.....0\right)+\left(.....0\right)+\left(.....0\right)+8=\left(.....8\right)\)
\(\Rightarrow\) A có tận cùng là 8
Mà số chính phương không có tận cùng là 8 nên A không phải số chính phương (đpcm)
Do \(\overline{ab}-\overline{ba}\) là số chính phương \(\Leftrightarrow\overline{ab}-\overline{ba}=n^2\left(n\in Z\right)\)
\(\Leftrightarrow10a+b-10b-a=n^2\)
\(\Leftrightarrow9a-9b=n^2\Leftrightarrow9\left(a-b\right)=n^2\) (1)
Do \(9;n^2\) là các số chính phương ; Để (1) xảy ra \(\Leftrightarrow a-b\) là số chính phương
Do a > b ; a;b có 1 chứ số \(\Rightarrow a-b\in\left\{1;4;9\right\}\)
+) Với \(a-b=1\Rightarrow\overline{ab}=\left\{98;87;76;65;54;43;32;21\right\}\)
Mà \(\overline{ab}\) là số nguyên tố nên \(\overline{ab}=43\)
+) Với \(a-b=4\Rightarrow\overline{ab}\in\left\{95;84;73;62;51\right\}\)
Mà \(\overline{ab}\) là số nguyên tố nên \(\overline{ab}=73\)
+) Với \(a-b=9\Rightarrow\overline{ab}=90\)(loại vì \(\overline{ab}\) là số nguyên tố )
Vậy \(\overline{ab}=\left\{43;73\right\}\)
1011944537 không phải số chính phương
Không phải .