Có bạn nào giải cho cô phép tính này với Hàm số y= - x + 3x + 2 đạt cực đại tại điểm nào dưới đây:
a.x=1
b.x= -1
c.x= 0
d.x=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(y'=3x^2-6x+m^2\Rightarrow y'=0\Leftrightarrow3x^2-6x+m^2=0\left(1\right)\)
Hàm số có cực trị \(\Leftrightarrow\left(1\right)\) có 2 nghiệm phân biệt \(x_1;x_2\)
\(\Leftrightarrow\Delta'=3\left(3-m^2\right)>0\Leftrightarrow-\sqrt{3}< m< \sqrt{3}\)
Phương trình đường thẳng d' đi qua các điểm cực trị là : \(y=\left(\frac{2}{3}m^2-2\right)x+\frac{1}{3}m^2\)
=> Các điểm cực trị là :
\(A\left(x_1;\left(\frac{2}{3}m^2-2\right)x_1+\frac{1}{3}m^2+3m\right);B\left(x_2;\left(\frac{2}{3}m^2-2\right)x_2+\frac{1}{3}m^2+3m\right);\)
Gọi I là giao điểm của hai đường thẳng d và d' :
\(\Rightarrow I\left(\frac{2m^2+6m+15}{15-4m^2};\frac{11m^2+3m-30}{15-4m^2}\right)\)
A và B đối xứng đi qua d thì trước hết \(d\perp d'\Leftrightarrow\frac{2}{3}m^2-2=-2\Leftrightarrow m=0\)
Khi đó \(I\left(1;-2\right);A\left(x_1;-2x_1\right);B\left(x_2;-2x_2\right)\Rightarrow I\) là trung điểm của AB=> A và B đối xứng nhau qua d
Vậy m = 0 là giá trị cần tìm
Chọn B
Ta có
Ta có bảng biến thiên:
Vậy điểm cực đại của đồ thị hàm số là M(-1;3)
Chọn: C
Điểm x = x 0 là điểm cực đại của hàm số
Vậy x 0 = - 1 là điểm cực đại x 0 của hàm số y = x 3 - 3 x + 1
\(y'=-3x^2+6x=0\Rightarrow\left\{{}\begin{matrix}x=0\Rightarrow y=2\\x=2\Rightarrow y=6\end{matrix}\right.\)
\(\Rightarrow A\left(0;2\right)\) ; \(B\left(2;6\right)\)
Theo công thức trung điểm ta có tọa độ trung điểm AB là \(\left(1;4\right)\)