Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho (a+b+c)^2=a^2+b^2+c^2 và abc khác 0.
CMR: bc/a^2 + ab/c^2 + ac/b^2=3.
Ta có \(\frac{bc}{a^2}+\frac{ab}{c^2}+\frac{ac}{b^2}=\frac{\left(bc\right)^3+\left(ab\right)^3+\left(ac\right)^3}{\left(abc\right)^2}\)
Ta lại có (a+b+c)2=a2+b2+c2
=>a2+b2+c2+2(ab+bc+ac)= a2+b2+c2
=> 2(ab+bc+ac)=0=> ab+bc+ac=0
Ta cần chứng minh bài toán phụ x+y+z=0 thì
x3+y3+z3=3xyz
Ta thấy x+y+z=0=> x+y=-z
=> (x+y)3=-z3 => x3+3xy(x+y)+y3=-z3
=> x3+y3+z3=-3xy(x+y)=-3xy.(-z)=3xyz
Áp dụng vào bài toán ta có
ab+bc+ac=0 => (ab)3+(bc)3+(ac)3=3(abc)2
=> \(\frac{bc}{a^2}+\frac{ab}{c^2}+\frac{ac}{b^2}=\frac{3\left(abc\right)^2}{\left(abc\right)^2}=3\)
=> đpcm
Ta có \(\frac{bc}{a^2}+\frac{ab}{c^2}+\frac{ac}{b^2}=\frac{\left(bc\right)^3+\left(ab\right)^3+\left(ac\right)^3}{\left(abc\right)^2}\)
Ta lại có (a+b+c)2=a2+b2+c2
=>a2+b2+c2+2(ab+bc+ac)= a2+b2+c2
=> 2(ab+bc+ac)=0=> ab+bc+ac=0
Ta cần chứng minh bài toán phụ x+y+z=0 thì
x3+y3+z3=3xyz
Ta thấy x+y+z=0=> x+y=-z
=> (x+y)3=-z3 => x3+3xy(x+y)+y3=-z3
=> x3+y3+z3=-3xy(x+y)=-3xy.(-z)=3xyz
Áp dụng vào bài toán ta có
ab+bc+ac=0 => (ab)3+(bc)3+(ac)3=3(abc)2
=> \(\frac{bc}{a^2}+\frac{ab}{c^2}+\frac{ac}{b^2}=\frac{3\left(abc\right)^2}{\left(abc\right)^2}=3\)
=> đpcm