Rút gọn:\(A=\frac{2x^2-xy-3y^2}{2x^2-5xy+3y^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện \(x\ne\pm3;y\ne-2\):
\(P=\frac{2x+3y}{xy+2x-3y-6}-\frac{6-xy}{xy+2x+3y+6}-\frac{x^2+9}{x^2-9}.\)
=> \(P=\frac{2x+3y}{\left(y+2\right)\left(x-3\right)}-\frac{6-xy}{\left(y+2\right)\left(x+3\right)}-\frac{x^2+9}{\left(x-3\right)\left(x+3\right)}\)
\(P=\frac{\left(2x+3y\right)\left(x+3\right)-\left(6-xy\right)\left(x-3\right)-\left(x^2+9\right)\left(y+2\right)}{\left(y+2\right)\left(x-3\right)\left(x+3\right)}\)
\(P=\frac{2x^2+3xy+6x+9y-6x+x^2y+18-3xy-x^2y-9y-2x^2-18}{\left(y+2\right)\left(x-3\right)\left(x+3\right)}\)
\(P=\frac{0}{\left(y+2\right)\left(x-3\right)\left(x+3\right)}=0\)
=> P=0 (với mọi x khác 3, -3 và y khác -2)
a)=(x^2-x-6)-(x^2-x-5)
=x^2-x-6-x^2+x+5
=-1
b)đề bài kì cục
a)\(\left(2x^2+4x^2\right)+\left[\left(-5xy\right)+xy\right]+\left(3y^2-2y^2\right)=6x^2-4xy+y^2\)
b)\(2x^2-5xy+3y^2+4x^2+xy-2y^2+2x^2+4xy-5y^2\)
=\(\left(2x^2+4x^2+2x^2\right)+\left(-5xy+xy+4xy\right)+\left(3y^2-2y^2-5y^2\right)\)
=\(8x^2-4y^2\)
A - B = (x3y - 2xy + 5xy2 - 3x2y2 - 1) - (-2x3y - xy2 + 2x2y2 - xy + 8)
= x3y - 2xy + 5xy2 - 3x2y2 - 1 + 2x3y + xy2 - 2x2y2 + xy - 8
= (x3y + 2x3y) + (-2xy + xy) + (5xy2 + xy2) + (-3x2y2 - 2x2y2) + (-1 - 8)
= 3x3y - xy + 6xy2 - 5x2y2 - 9
a-b=(x^3y-2xy+5xy^2-3x^2y^2-1)-(-2x^3y-xy^2+2x^2y^2-xy+8)
=x^3y-2xy+5xy^2-3x^2y^2-1+2x^3y+xy^2-2x^2y^2+xy-8
=x^3y+(-2xy+xy)+(5xy^2+xy^2)+(-3x^2y^2-2x^2y^2)+(-1-8)
=x^3y-1xy+6xy^2-5x^2y^2-9
Với điều kiện xy\(\ne\)0;+ -3/2 y;x\(\ne\)-y các phân thức có nghĩa. Ta có
\(\frac{5x\left(2x-3y\right)^2}{3y\left(4x^2-9y^2\right)}:\frac{\left(2x^2+2xy\right)\left(2x-3y\right)}{2x^2y+5xy^2+3y^3}\)\(=\)\(\frac{5x\left(2x-3y\right)^2.y\left(2x^2+5xy+3y^2\right)}{3y\left(4x^2-9y^2\right).2x\left(x+y\right).\left(2x-3y\right)}\)
\(=\)\(\frac{10xy\left(2x-3y\right)^2.\left(2x^2+2xy+3xy+3y^2\right)}{6xy\left(2x-3y\right).\left(2x+3y\right)\left(x+y\right)\left(2x-3y\right)}\)\(=\)\(\frac{10xy\left(2x-3y\right)^2\left(x+y\right).\left(2x+3y\right)}{6xy\left(2x-3y\right)^2.\left(2x+3y\right).\left(x+y\right)}\)
\(=\)\(\frac{5}{3}\)
ĐK \(\hept{\begin{cases}xy\ne0\\2x-3y\ne0,2x+3y\ne0\\x\ne-y\end{cases}}\)
\(=\frac{5x\left(2x-3y\right)^2}{3y\left(2x+3y\right)\left(2x-3y\right)}:\frac{2x\left(x+y\right)\left(2x-3y\right)}{xy\left(2x+3y\right)+y^2\left(2x+3y\right)}\)
\(=\frac{5x\left(2x-3y\right)}{3y\left(2x+3y\right)}:\frac{2x\left(x+y\right)\left(2x-3y\right)}{\left(2x+3y\right)\left(xy+y^2\right)}\)
\(=\frac{5x\left(2x-3y\right)}{3y\left(2x+3y\right)}.\frac{y\left(x+y\right)\left(2x+3y\right)}{2x\left(x+y\right)\left(2x-3y\right)}=\frac{5}{6}\)
Vậy giá trị của biểu thức không phụ thuộc vào biến
a) \(=-10x^6y^7+10x^5y^6+5x^3y^5\)
b) \(=-8x^5y^3+16x^7y^2-12x^3y^4\)
A = (2x^2+2xy)-(3xy+3y^2) / (2x-2xy)-(3xy-3y^2)
= (x+y).(2x-3y)/(x-y).(2x-3y) = x+y/x-y
k mk nha
đkxđ \(x\ne y\)
\(A=\frac{x\left(2x-3y\right)+y\left(2x-3y\right)}{x\left(2x-3y\right)-y\left(2x-3y\right)}=\frac{\left(x+y\right)\left(2x-3y\right)}{\left(x-y\right)\left(2x-3y\right)}=\frac{x+y}{x-y}\)