1/(-5)^153 và -1/2^357 so sánh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


3^200 = (3^2)^100 = 9^100
2^300 = (2^3)^100 = 8^100
Vì 9^100 > 8^100
Vậy 3^200 > 2^300

\(8^5=\left(2^3\right)^5=2^{15}=2.2^{14}\)
\(3.4^7=3.\left(2^2\right)^7=3.2^{14}\)
Vì 2 < 3 nên 85 < 3 . 47

a: \(3^4=3^4;9^3=\left(3^2\right)^3=3^{2\cdot3}=3^6\)
mà \(3^4<3^6\)
nên \(3^4<9^3\)
b: \(A=1+2+2^2+\cdots+2^{2017}\)
=>\(2A=2+2^2+2^3+\cdots+2^{2018}\)
=>\(2A-A=2+2^2+2^3+\cdots+2^{2018}-1-2-2^2-\cdots-2^{2017}\)
=>\(A=2^{2018}-1\)
=>A=B
c: \(16^{19}=\left(2^4\right)^{19}=2^{4\cdot19}=2^{76};8^{25}=\left(2^3\right)^{25}=2^{3\cdot25}=2^{75}\)
mà \(2^{76}<2^{75}\)
nên \(16^{19}<8^{25}\)
d: \(5^{23}=5\cdot5^{22}<6\cdot5^{22}\)
e: \(5^{36}=\left(5^3\right)^{12}=125^{12}\)
\(11^{24}=\left(11^2\right)^{12}=121^{12}\)
mà 125>121
nên \(5^{36}>11^{24}\)

8^5 = (2^3)^5 = 2^15 = 2^14 . 2
3.4^7 = 3.2^14
2^14 = 2^14 mà 3 > 2 nên 8^5 < 3.4^7
#Đàoo

536 = (53)12 = 12512 ; 1124 = (112)12 = 12112.Vì 12512 > 12112 nên 536 > 1124

a) 32n với 23n
xét 32n: Xét 23n:
=32.3n = 23.2n
=9.3n = 8.2n
Ta thấy: 9>8,3n>2n
=>32n>23n
a , 3^2n và 2^3n
Ta có : 3^2n = 3^2 . n = 9^n
2^3n = 2^3 . n = 8^n
Mà 9^n > 8^n => 3^2n > 2^3n
c , 5^36 và 11^24
Ta có : 5^36 = 5^3 . 12 = 125^12
11^24 = 11^2 . 12 = 121^12
Mà 125^12 > 121^12 => 5^36 > 11^24
b , 5^23 và 6 . 5^22
Ta có : 5^23 = 5 . 5^22
Mà 6 > 5 => 6 . 5^22 > 5 . 5^22
=> 5^23 < 6 . 5^22