K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\left(x-2020\right)^{x+1}-\left(x-2020\right)^{x+11}=0\)

=>\(\left(x-2020\right)^{x+11}-\left(x-2020\right)^{x+1}=0\)

=>\(\left(x-2020\right)^{x+1}\left[\left(x-2020\right)^{10}-1\right]=0\)

=>\(\left[{}\begin{matrix}x-2020=0\\\left(x-2020\right)^{10}=1\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x-2020=0\\x-2020=-1\\x-2020=1\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=2020\\x=2019\\x=2021\end{matrix}\right.\)

|x+19|+|x+5|+|x+2020|=5x(*)

+)Ta có:|x+19|\(\ge\)0;|x+5|\(\ge\)0;|x+2020|\(\ge\)0

=>VT(*)=|x+19|+|x+5|+|x+2020|\(\ge\)0

Mà |x+19|+|x+5|+|x+2020|=5x

=>5x\(\ge\)0

=>x\(\ge\)0

+)Ta lại có:x\(\ge\)0=>x+19\(\ge\)19=>|x+19|=x+19

                    x\(\ge\)0=>x+5\(\ge\)5=>|x+5|=x+5

                   x\(\ge\)0=>x+2020\(\ge\)2020=>|x+2020|=x+2020

=>VT(*)=x+19+x+5+x+2020=5x

              x+x+x+19+5+2020=5x

             3x+2044        =5x

                  2044        =5x-3x

                  2044        =2x

               => 2x            =2044

                   x             =\(\frac{2044}{2}=1022\)\(\in\)Z

Vậy x=1022

Chúc bn học tốt

19 tháng 2 2020

cảm ơn bạn nha!!!

=>\(\left(\dfrac{x+1}{2021}+1\right)+\left(\dfrac{x+2}{2020}+1\right)+\left(\dfrac{x+3}{2019}+1\right)+\left(\dfrac{x+2028}{2}-3\right)=0\)

=>x+2022=0

=>x=-2022

9 tháng 5 2021

ĐKXĐ : \(\left\{{}\begin{matrix}x>2019\\y>2020\\z>2021\end{matrix}\right.\)

Đặt \(\sqrt{x-2019}=a,......\)

Ta được PT : \(\dfrac{1-a}{a^2}+\dfrac{1-b}{b^2}+\dfrac{1-c}{c^2}+\dfrac{3}{4}=0\)

\(\Leftrightarrow\dfrac{1}{a^2}-\dfrac{1}{a}+\dfrac{1}{4}+\dfrac{1}{b^2}-\dfrac{1}{b}+\dfrac{1}{4}+\dfrac{1}{c^2}-\dfrac{1}{c}+\dfrac{1}{4}=0\)

\(\Leftrightarrow\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{b}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{c}-\dfrac{1}{2}\right)^2=0\)

- Thấy : \(\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2\ge0,......\)

\(\Rightarrow\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{b}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{c}-\dfrac{1}{2}\right)^2\ge0\)

- Dấu " = " xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{2}\\\dfrac{1}{b}=\dfrac{1}{2}\\\dfrac{1}{c}=\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)

- Thay lại a. b. c ta được : \(\left\{{}\begin{matrix}\sqrt{x-2019}=2\\\sqrt{y-2020}=2\\\sqrt{z-2021}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2019=4\\y-2020=4\\z-2021=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2023\\y=2024\\z=2025\end{matrix}\right.\) ( TM )

Vậy ...

 

AH
Akai Haruma
Giáo viên
25 tháng 5 2023

Lời giải:

Ta có: $\Delta=(m-3)^2+16>0$ với mọi $m$ nên pt luôn có 2 nghiệm phân biệt $x_1,x_2$ với mọi $m$.

Theo định lý Viet: 

$x_1+x_2=m-3$

$x_1x_2=-4$

Có:

$\sqrt{x_1^2+2020}-x_1=\sqrt{x_2^2+2020}+x_2$

$\Leftrightarrow \sqrt{x_1^2+2020}-\sqrt{x_2^2+2020}=x_1+x_2$

$\Leftrightarrow \frac{x_1^2-x_2^2}{\sqrt{x_1^2+2020}+\sqrt{x_2^2+2020}}=x_1+x_2$

$\Leftrightarrow (x_1+x_2)\left[\frac{x_1-x_2}{\sqrt{x_1^2+2020}+\sqrt{x_2^2+2020}}-1\right]=0$

$\Leftrightarrow x_1+x_2=0$ hoặc $x_1-x_2=\sqrt{x_1^2+2020}+\sqrt{x_2^2+2020}$

Với $x_1+x_2=0$

$\Leftrightarrow m-3=0\Leftrightarrow m=3$ (tm)

Với $x_1-x_2=\sqrt{x_1^2+2020}+\sqrt{x_2^2+2020}$

$\Rightarrow (x_1-x_2)^2=(\sqrt{x_1^2+2020}+\sqrt{x_2^2+2020})^2$

$\Leftrightarrow -2x_1x_2=4040+2\sqrt{(x_1^2+2020)(x_2^2+2020)}$

$\Leftrightarrow 8=4040+2\sqrt{(x_1^2+2020)(x_2^2+2020)}$

$\Leftrightarrow \sqrt{(x_1^2+2020)(x_2^2+2020)}=-2016<0$ (vô lý - loại)

Vậy $m=3$

3 tháng 11 2018

\(\frac{1}{\sqrt{x+1}+\sqrt{x+2}}+\frac{1}{\sqrt{x+2}+\sqrt{x+3}}+...+\frac{1}{\sqrt{x+2019}+\sqrt{x+2020}}=11\)

\(\Leftrightarrow\)\(\frac{\sqrt{x+2}-\sqrt{x+1}}{\left(\sqrt{x+1}+\sqrt{x+2}\right)\left(\sqrt{x+2}-\sqrt{x+1}\right)}+\frac{\sqrt{x+3}-\sqrt{x+2}}{\left(\sqrt{x+2}+\sqrt{x+3}\right)\left(\sqrt{x+3}-\sqrt{x+2}\right)}\)

\(+...+\frac{\sqrt{x+2020}-\sqrt{x+2019}}{\left(\sqrt{x+2019}+\sqrt{x+2020}\right)\left(\sqrt{x+2020}-\sqrt{x+2019}\right)}=11\)

\(\Leftrightarrow\)\(\frac{\sqrt{x+2}-\sqrt{x+1}}{x+2-x-1}+\frac{\sqrt{x+3}-\sqrt{x+2}}{x+3-x-2}+...+\frac{\sqrt{x+2020}-\sqrt{x+2019}}{x+2020-x-2019}=11\)

\(\Leftrightarrow\)\(\sqrt{x+2}-\sqrt{x+1}+\sqrt{x+3}-\sqrt{x+2}+...+\sqrt{x+2020}-\sqrt{x+2019}=11\)

\(\Leftrightarrow\)\(\sqrt{x+2020}-\sqrt{x+1}=11\)

\(\Leftrightarrow\)\(\sqrt{x+2020}=11+\sqrt{x+1}\)

\(\Leftrightarrow\)\(x+2020=121+22\sqrt{x+1}+x+1\)

\(\Leftrightarrow\)\(22\sqrt{x+1}=1898\)

\(\Leftrightarrow\)\(\sqrt{x+1}=\frac{949}{11}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x+1=\frac{900601}{121}\\x+1=\frac{-900601}{121}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{900480}{121}\\x=\frac{-900722}{121}\end{cases}}\)

Chúc bạn học tốt ~ 

PS : sai thì thui nhá 

3 tháng 11 2018

Bài của bạn Quân làm đúng ùi nhưng mà căn thì không ra số âm nhé!

12 tháng 3 2023

a) \(3\left(2x-x\right)=5x+1\)

\(\Leftrightarrow6x-3x=5x+1\)

\(\Leftrightarrow6x-3x-5x=1\)

\(\Leftrightarrow-2x=1\)

\(\Leftrightarrow x=\dfrac{1}{-2}=-\dfrac{1}{2}\)

b) \(\dfrac{x+1}{2021}+\dfrac{x+2}{2020}+\dfrac{x+3}{2019}+\dfrac{x+4}{2018}=0\)

\(\Leftrightarrow\dfrac{x+1}{2021}+1+\dfrac{x+2}{2020}+1=\dfrac{x+3}{2019}+1+\dfrac{x+4}{2018}+1\)

\(\Leftrightarrow\dfrac{x+2022}{2021}+\dfrac{x+2022}{2020}=\dfrac{x+2022}{2019}+\dfrac{x+2022}{2018}\)

\(\Leftrightarrow\left(x+2022\right)\left(\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2019}+\dfrac{1}{2018}\right)\)

\(\Leftrightarrow x+2022=0\)

\(\Leftrightarrow x=-2022\)

 

12 tháng 3 2023

câu a sai đề bài ạ