92-2x=2.(x+4)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`#040911`
`a)`
\(\left(2x-1\right)^2-\left(2x+5\right)\left(2x+1\right)=10\)
\(\Leftrightarrow 4x^2 - 4x + 1 - (4x^2 + 12x + 5) = 10 \\ \Leftrightarrow 4x^2 - 4x + 1 - 4x^2 - 12x - 5 = 10 \\ \Leftrightarrow (4x^2 - 4x^2) - (4x + 12x) + (1 - 5) = 10 \\ \Leftrightarrow -16x - 4 = 10 \Leftrightarrow -16x = 10 + 4 \\ \Leftrightarrow -16x = 14 \\ \Leftrightarrow x = \dfrac{-7}{8}\)
Vậy, `x = -7/8`
`b)`
`9^2(x - 1) + 25(1 - x) = 0`
`<=> 9^2(x - 1) - 25(x - 1) = 0`
`<=> (x - 1)(9^2 - 5^2) = 0`
`<=>`\(\left[{}\begin{matrix}x-1=0\\9^2-5^2=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=1\\56=0\left(\text{vô lý}\right)\end{matrix}\right.\)
Vậy, `x = 1`
`c)`
`x^2+3x - 4 = 0`
`<=> x^2 + 4x - x - 4 = 0`
`<=> (x^2 - x) + (4x - 4) = 0`
`<=> x(x - 1) + 4(x - 1) = 0`
`<=> (x + 4)(x - 1) = 0`
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\\ \text{Vậy, }x\in\left\{-4;1\right\}\)
a: =>4x^2-4x+1-(4x^2+2x+10x+5)=10
=>4x^2-4x+1-10-4x^2-12x-5=0
=>-16x-4=0
=>x=-1/4
b: =>(x-1)(9^2-25)=0
=>x-1=0
=>x=1
c: =>x^2+4x-x-4=0
=>(x+4)(x-1)=0
=>x=1 hoặc x=-4
`#040911`
`a)`
`(2x - 1)^2 - (2x + 5)(2x + 1) = 10`
`\Leftrightarrow 4x^2 - 4x + 1 - (4x^2 + 12x + 5) = 10`
`\Leftrightarrow 4x^2 - 4x + 1 - 4x^2 - 12x - 5 = 10`
`\Leftrightarrow (4x^2 - 4x^2) - (4x + 12x) + (1 - 5) = 10`
`\Leftrightarrow -16x - 4 = 10`
`\Leftrightarrow -16x = 10 + 4`
`\Leftrightarrow -16x = 14`
`\Leftrightarrow x = \dfrac{-7}{8}`
Vậy, `x= \dfrac{-7}{8}`
`b)`
`9^2(x - 1) + 25(1 - x) = 0`
`\Leftrightarrow 9^2(x - 1) - 25(x - 1) = 0`
`\Leftrightarrow (x - 1)(9^2 - 25) = 0`
`\Leftrightarrow`\(\left[{}\begin{matrix}x-1=0\\9^2-5^2=0\end{matrix}\right.\)
`\Leftrightarrow`\(\left[{}\begin{matrix}x=1\\\left(9-5\right)\left(9+5\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\4\cdot14=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\56=0\left(\text{vô lý}\right)\end{matrix}\right.\\ \text{Vậy, x = 1}\)
`c)`
\(x^2+3x-4=0\)
`\Leftrightarrow x^2 + 4x - x - 4 = 0`
`\Leftrightarrow (x^2 - x) + (4x - 4) = 0`
`\Leftrightarrow x(x - 1) + 4(x - 1) = 0`
`\Leftrightarrow (x + 4)(x - 1) = 0`
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\\ \text{ Vậy, }x\in\left(-4;1\right)\)
1)
\(4x^2-4x+1-4x^2-16x-16=9\)
\(-20x-15=9\)
-20x=24
x=-1,2
3)
(2x+1)2=52
2x+1=5
2x=4
x=2
\(1,\Rightarrow4x^2-4x+1-4x^2-16x-16=9\\ \Rightarrow-20x=23\Rightarrow x=-\dfrac{23}{20}\\ 2,\Rightarrow9x^2-6x+1+2x+6+11-11x^2=15\\ \Rightarrow2x^2+4x-3=0\\ \Rightarrow2\left(x^2+2x+1\right)-5=0\\ \Rightarrow2\left(x+1\right)^2-5=0\\ \Rightarrow\left[\sqrt{2}\left(x+1\right)-\sqrt{5}\right]\left[\sqrt{2}\left(x+1\right)+\sqrt{5}\right]=0\\ \Rightarrow\left[{}\begin{matrix}\sqrt{2}\left(x+1\right)=\sqrt{5}\\\sqrt{2}\left(x+1\right)=-\sqrt{5}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x+1=\sqrt{\dfrac{5}{2}}=\dfrac{\sqrt{10}}{2}\\x+1=-\sqrt{\dfrac{5}{2}}=\dfrac{-\sqrt{10}}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{10}-2}{2}\\x=\dfrac{-\sqrt{10}-2}{2}\end{matrix}\right.\)
\(3,\Rightarrow\left(2x+1\right)^2-25=0\Rightarrow\left(2x+1-5\right)\left(2x+1+5\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x=4\\2x=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
\(4,\Rightarrow x^3+3x^2+3x+1-x^3-2x^2-2x+1-x^2=15\\ \Rightarrow x+2=15\Rightarrow x=13\)
a \(\dfrac{1}{x-y}+\dfrac{2}{x+y}+\dfrac{3x}{y^2-x^2}\)
\(=\dfrac{x+y+2x-2y-3x}{\left(x-y\right)\left(x+y\right)}=\dfrac{-y}{\left(x-y\right)\left(x+y\right)}\)
b: \(\dfrac{1}{x-2}+\dfrac{1}{x+2}-\dfrac{4x-4}{x^2-4}\)
\(=\dfrac{x+2+x-2-4x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{-2x+4}{\left(x-2\right)\left(x+2\right)}\)
=-2/x+2
c: \(\dfrac{x+1}{x+3}-\dfrac{x-1}{3-x}+\dfrac{2x-2x^2}{x^2-9}\)
\(=\dfrac{\left(x+1\right)\left(x-3\right)+\left(x-1\right)\left(x+3\right)+2x-2x^2}{\left(x+3\right)\left(x-3\right)}\)
\(=\dfrac{x^2-2x-3+x^2+2x-3+2x-2x^2}{\left(x+3\right)\left(x-3\right)}\)
\(=\dfrac{2x-6}{\left(x+3\right)\left(x-3\right)}=\dfrac{2}{x+3}\)
2:
1: =>36x+14x=69+81=150
=>50x=150
=>x=3
2: 3^x=81
=>3^x=3^4
=>x=4
3: 3(2x+1)^2=75
=>(2x+1)^2=25
=>2x+1=5 hoặc 2x+1=-5
=>x=-3 hoặc x=2
1:
1: \(\dfrac{13\cdot17^4+4\cdot17^4}{17^3}-\dfrac{14\cdot3^3-14\cdot3^2}{9}\)
\(=\dfrac{17^4\cdot\left(13+4\right)}{17^3}-\dfrac{14\cdot3^2\left(3-1\right)}{9}\)
\(=17\cdot17-14\cdot2\)
=289-28
=261
2:
\(2^3\cdot5^2-\left[131-\left(23-2^3\right)^2\right]\)
\(=8\cdot25-131+\left(-1\right)^2\)
=69+1
=70
a. \(\Leftrightarrow\dfrac{x+2}{98}+1+\dfrac{x+4}{96}+1=\dfrac{x+6}{94}+1+\dfrac{x+8}{92}+1\)
\(\Leftrightarrow\dfrac{x+100}{98}+\dfrac{x+100}{96}=\dfrac{x+100}{94}+\dfrac{x+100}{92}\)
\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{98}+\dfrac{1}{96}-\dfrac{1}{94}-\dfrac{1}{92}\right)=0\)
\(\Leftrightarrow x+100=0\Leftrightarrow x=-100\)
c. \(\Leftrightarrow3x^2+3x-x-1=0\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\Leftrightarrow\left[\begin{matrix}x+1=0\\3x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\)
1. xy + 5x + 5y = 92
=> (xy + 5x) + (5y + 25) = 92 + 25
=> x(y + 5) + 5(y + 5) = 117
=> (x + 5)(y + 5) = 117
=> x + 5 \(\in\)Ư(117) = {-1;1;-3;3;-9;9;-13;13;-39;39;-117;117}
Mà x >= 0 => x + 5 >= 5
=> x + 5 \(\in\){9;13;39;117}
Ta có bảng sau:
x + 5 | 9 | 13 | 39 | 117 |
x | 4 | 8 | 34 | 112 |
y + 5 | 13 | 9 | 3 | 1 |
y | 8 | 4 | -2 (loại) | -4 (loại) |
Vậy; (x;y) \(\in\){(4;8);(8;4)}
a) \(\left(\frac{x+2}{98}+1\right)+\left(\frac{x+4}{96}+1\right)=\left(\frac{x+6}{94}+1\right)+\left(\frac{x+8}{92}+1\right)\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{96}=\frac{x+100}{94}+\frac{x+100}{92}\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\right)=0\)
\(\Leftrightarrow x+100=0\) ( do \(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\ne0\) )
\(\Leftrightarrow x=-100\)
b) \(3x^2+2x-1=0\)
\(\Leftrightarrow3x^2+3x-x-1=0\)
\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=-1\end{matrix}\right.\)
92-2x=2(x+4)
92-2x=2x+8=8+2x
92-2x-2x=8
92-4x=8
4X=92-8
4x=84
X=84:4=21
92 - 2x = 2 . ( x + 4 )
92 - 2x = 2x + 2 . 4
92 - 2x = 2x + 8
2x - 2x = 92 + 8
2x = 100
x = 100 : 2
x = 50
Vẫy x = 50