Tìm n thuộc Z để A = 4n + 5/5n + 3 là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(4n+6-1)/(2n+3)=2(2n+3)/(2n+3) -1/(2n+3)
=2-1/(2n+3)
Vậy để A nguyên thì 2n+3 phải là ước của 1
=> 2n+3={-1; 1}
+/ 2n+3=-1 => 2n=-4 => n=-2
+/ 2n+3=1 => 2n=-2 => n=-1
Đs: n=-2; -1
ta có 4n + 5 = 20n + 25
5n + 4 = 20n + 16
suy ra ( 20n + 25 ) - ( 20n + 16 ) chia hết cho 5n + 4
suy ra 9 chia hết cho 5n + 4
vậy 5n + 4 thuộc ước của 9
5n+4 | -1 | 1 | -3 | 3 | -9 | 9 |
n | -1 | 1 | ||||
tm | ktm | ktm | ktm | ktm | tm |
vậy có 2TH TM
A=\(\frac{4n+1}{2n+3}=\frac{2\left(2n+3\right)-5}{2n+3}=2+\frac{-5}{2n+3}\)
Để A nguyên thì \(\frac{-5}{2n+3}\) phải nguyên
=> \(2n+3\inƯ\left(-5\right)=\left\{1;-1;5;-5\right\}\)
=> \(n\in\left\{-1;-2;1;-4\right\}\)
Tổng 3 số là 1 số chẵn nên 1 trong 3 số phải có 1 số chẵn nguyên tố (là 2)
Vì 4n-5 lẻ nên 3n-4=2 hoặc 5n-3=2
Giải ra ta được n=2
\(\text{Nếu n = 1 thì 3n - 4 = -1 (loại)}\)
Nếu n = 2 thì:
\(\hept{\begin{cases}3n-4=2.3-4=2\\4n-5=2.4-5=3\\5n-3=2.5-3=7\end{cases}}\)
Các số trên đều là số nguyên tố nên n = 2 thỏa mãn
Nếu n > 2 thì 3n - 4 ; 4n - 5 ; 5n - 3 đều lớn hơn 2
Ta có:
Với n=2k thì 3n - 4 = 6k - 4 \(⋮\) 2 nên không là số nguyên tố
Với n = 2k + 1 thì 5n - 3 = 5 (2k+1) - 3 = 10k + 2 \(⋮\)2 nên không là số nguyên tố
Do đó không có số tự nhiên n > 2 nào thảo mãn
Vậy n=2
Để A là số nguyên thì
4n+1\(^._:\)2n+3
=>4n+6-5\(^._:\)2n+3
Vì 4n+6\(^._:\)2n+3
=>5\(^._:\)2n+3
=>2n+3\(\in\)Ư(5)={1;-1;5;-5}
Ta có bảng sau:
2n+3 | n |
1 | -1 |
-1 | -2 |
5 | 1 |
-5 | -4 |
KL: n\(\in\){-1;-2;1;-4}
Để 3n+2/4n-5 là số nguyên => 3n+2 chia hết cho 4n-5
=> 4(3n+2) chia hết cho 4n-5
=> 12n+8 chia hết cho 4n-5
=> 3(4n-5)+23 chia hết cho 4n-5
=> 23 chia hết cho 4n-5
=> 4n-5 thuộc Ư(23)={1;-1;23;-23}
Bạn chia TH ra sẽ ra là 1 và 7 nhé (sau khi đã loại các TH là phân số)
Vào link này lập nik lazi nhé
https://lazi.vn/users/dang_ky?u=kieu-anh.pham4
Để A là số nguyên thì \(4n+5⋮5n+3\)
=>\(20n+25⋮5n+3\)
=>\(20n+12+13⋮5n+3\)
=>\(13⋮5n+3\)
=>\(5n+3\in\left\{1;-1;13;-13\right\}\)
=>\(n\in\left\{-\dfrac{2}{5};-\dfrac{4}{5};2;-\dfrac{16}{5}\right\}\)
mà n nguyên
nên n=2