Tìm x biết x^3-3x^2-4x+12=6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


3x(x2 - 4) = 0
Mà 3 khác 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2;2\end{cases}}\)

\(\left(x+3\right)^3-3\cdot\left(3x+1\right)^2+\left(2x+1\right)\cdot\left(4x^2-2x+1\right)=54\)
\(\Leftrightarrow x^3+9x^2+27x+27-3\cdot\left(9x^2+6x+1\right)+8x^3-4x^2+2x+4x^2-2x+1=54\)
\(\Leftrightarrow x^3+9x^2+27x+27-27x^2-18x-3+8x^3-4x^2+2x+4x^2-2x+1=54\)
\(\Leftrightarrow9x^3-18x^2+9x-29=0\)
\(\Leftrightarrow x=2,208024627\)

\(x\left(x-3\right)-12+4x=0\)
\(\Leftrightarrow x^2-3x-12+4x=0\)
\(\Leftrightarrow x^2+x-12=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-4\end{cases}}\)


a, 12 - (2\(x^2\) - 3) = 7
2\(x^2\) - 3 = 12 - 7
2\(x^2\) - 3 = 5
2\(x^2\) = 8
\(x^2\) = 4
\(\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)

\(\dfrac{3x^6-4x^3}{x^3}-\dfrac{\left(3x+1\right)^2}{3x+1}-\dfrac{3x^7}{x^5}=0\)
\(\Leftrightarrow3x^3-4-3x-1-3x^2=0\)
\(\Leftrightarrow3x^3-3x^2-3x-5=0\)
\(\Leftrightarrow x\simeq1,9506\)
\(x^3-3x^2-4x+12=6\)
=>\(x^3-3x^2-4x+6=0\)
=>\(x^3-x^2-2x^2+2x-6x+6=0\)
=>\(\left(x-1\right)\left(x^2-2x-6\right)=0\)
=>\(\left[{}\begin{matrix}x-1=0\\x^2-2x-6=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=1\\x^2-2x+1=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x-1\right)^2=7\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=1\\x-1=\sqrt{7}\\x-1=-\sqrt{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{7}+1\\x=-\sqrt{7}+1\end{matrix}\right.\)
\(x^3-3x^2-4x+12=6\\ \Rightarrow x^3-3x^2-4x+6=0\\ \Rightarrow\left(x^3-x^2\right)-\left(2x^2-2x\right)-\left(6x-6\right)=0\\ \Rightarrow x^2\left(x-1\right)-2x\left(x-1\right)-6\left(x-1\right)=0\\ \Rightarrow\left(x-1\right)\left(x^2-2x-6\right)=0\\ \Rightarrow\left(x-1\right)\left[\left(x^2-2x+1\right)-7\right]=0\\ \Rightarrow\left(x-1\right)\left[\left(x-1\right)^2-7\right]=0\\ \Rightarrow\Rightarrow\left(x-1\right)\left(x-1-\sqrt{7}\right)\left(x-1+\sqrt{7}\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x-1-\sqrt{7}=0\\x-1+\sqrt{7}=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=1+\sqrt{7}\\x=1-\sqrt{7}\end{matrix}\right.\)
Vậy...