Tính:
\(S = {1/1.2+1/2*3+...+1/2001*2002}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+....+\(\dfrac{1}{2001.2002}\)
=1-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+....+\(\dfrac{1}{2001}\)-\(\dfrac{1}{2002}\)
=1-\(\dfrac{1}{2002}\)=\(\dfrac{2001}{2002}\)
\(S=1+\left(-2\right)+3+\left(-4\right)+...+2001+\left(-2002\right)\)
\(S=\left[1+\left(-2\right)\right]+\left[3+\left(-4\right)\right]+...+\left[2001+\left(-2002\right)\right]\)(1001 nhóm)
\(S=\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)(1001 nhóm)
\(S=\left(-1\right).1001\)
\(S=-1001\)
S=(1+2-3-4)+(5+6-7-8)+......+(2001+2002-2003-2004)+(2005+2006)
S=(-4)+(-4)+.......+(-4)+(2005+2006)
Dãy S có 2004-1:1+1=2004 số hạng
Dãy S có 2004:4=501 số -4
Do đó S=-4.501=-2004
S=-2004+(2005+2006)
S=-2004+4011
S=2007
1,S=(1-2-3+4)+(5-6-7+8)+.......+(2001-2002-2003+2004)
S=0+0+.........................+0
S=0
2,hình như pan gi sai đề
S=\(\left(1+\frac{1}{2}+......+\frac{1}{2002}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+..........+\frac{1}{2002}\right)\)
=\(\left(1+\frac{1}{2}+.........+\frac{1}{2002}\right)-\left(1+\frac{1}{2}+.........+\frac{1}{1001}\right)\)
=\(\frac{1}{1002}+\frac{1}{1003}+...........+\frac{1}{2002}=P\)
\(\Rightarrow S-P=0\)
a)S= (1-2-3+4)+(5-6-7+8)+....+(2001-2002-2003+2004)=0+0+0+..+000000000000= 0
b)Tương tự a nhưng nhóm 5 sô
S = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - ...... + 1998 - 1999 - 2000 + 2001 + 2002
S = 1 + (2 - 3 - 4 + 5 )+ (6 - 7 - 8 + 9) + (10 - ...... + (1998 - 1999 - 2000 + 2001) + 2002
S=1+0+0...+0+2002
S= 1+2002
S=2003
Lời giải:
$S=(1+2-3-4)+(5+6-7-8)+(9+10-11-12)+...+(1997+1998-1999-2000)+2001+2002$
$=\underbrace{(-4)+(-4)+....+(-4)}_{500}+2001+2002$
$=(-4).500+2001+2002=2003$
a) Ta có: S = 1 - 2 - 3 + 4 + 5 - 6 - 7+ 8 + ... + 2001 - 2002 - 2003 + 2004
\(\Rightarrow\) S = (1 - 2 - 3 + 4) + (5 - 6 - 7+ 8) + ... + (2001 - 2002 - 2003 + 2004)
\(\Rightarrow\) S = (-4 + 4) + (-8 + 8) + ... + (-2004 + 2004)
\(\Rightarrow\) S = 0 + 0 + ... + 0
\(\Rightarrow\) S = 0
\(S=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2001.2002}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2001}-\frac{1}{2002}\)
\(S=1-\frac{1}{2002}\)
\(S=\frac{2001}{2002}\)
\(S=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2001.2002}\)
\(\Leftrightarrow S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2001}-\frac{1}{2002}\Leftrightarrow1-\frac{1}{2002}\)
\(\Leftrightarrow S=\frac{2001}{2002}\)