Tìm GTNN của M=6+4.|x^2+1|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
Tìm GTNN của biểu thức M
M = \(\left(x-1\right)^4+\left(3-x\right)^4+6\left(x^2-4x+3\right)^2+2013\)
\(M=\frac{1}{4}x^2-\frac{x}{6}-1\)
\(M=\left(\frac{1}{2}x\right)^2-2\cdot\frac{1}{2}x\cdot\frac{1}{6}+\frac{1}{36}-1-\frac{1}{36}\)
\(M=\left(\frac{1}{2}x-\frac{1}{6}\right)^2-1\frac{1}{6}\ge-1\frac{1}{6}\)
suy ra GTNN của M là \(1\frac{1}{6}\)
dấu = xảy ra khi
x = 1/3
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
tìm gtnn củaa, A=|2=4x|-6b, 1-4/x^2+1GIÚP MIK VS MIK CẢM ƠN - Hoc24
`M = 6 + 4 . |x^2 + 1| `
Do `x^2 + 1 > 0`
`=> |x^2 + 1| = x^2 + 1`
`M = 6 + 4 . (x^2 + 1) `
`= 6 + 4x^2 + 4`
`= 4x^2 + 10`
Để M đạt GTNN thì `x^2` đạt GTNN
Mà `x^2 >= 0 `
Dấu = xảy ra khi:
`x = 0`
Khi đó `M = 10`
Vậy GTNN của M là `10` khi `x = 0`
bfvnvjcvgvmggbvfdjbvfkfnb