Cho tam giác ABC có BC=8 cm. Gọi D là một điểm thuộc cạnh BC sao cho D cách B một khoảng 0,2 dm. Hãy tìm vị trí của điểm M thuộc cạnh AB sao cho diện tích tứ giác AMDC bằng 7/8 diện tích tam giác ABC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) SABC = 360 cm2 ; SBMC = 120 cm2 nên SCBM = \(\frac{1}{3}\) x SABC
Ta lại có Tam giác CBM và tam giác CBA có chung chiều cao hạ từ đỉnh C nên đáy BM = \(\frac{1}{3}\)lần đáy BA
Vậy M nằm trên cạnh AB sao cho BM = 1/3 AB
b) tam giác MBN và tam giác MBC đêu chó chung chiều cao hạ từ đỉnh M là MH;
đáy BN = \(\frac{1}{2}\)lần đáy BC
nên SMBN = \(\frac{1}{2}\)x SMBC = \(\frac{1}{2}\)x 120 = 60 cm2
Ta có: SMBN + SAMNC = SABC
60 + SAMNC = 360
SAMNC = 360 - 60 = 300 cm vuông
ĐS: .............
\(S_{BMC_{ }_{ }}=\frac{BM.CA}{2}=\frac{20.60}{2}=600cm^2\)
Ta có MN là đường tb của tam giác ABC => MN//AC và MN.2 = AC
=> MN là đường cao của AB ,MN=30 cm
=> SABN=30.40:2=600cm2
b)SAMNC=(MN+AC) .AM:2=(30+60).20:2=900cm2
c)SMAC=MA.AC:2
SANC=CA.MA:2
=> SMAC=SANC=>SAMO=SCON
Giải:
a) Diện tích tam giác ABC = 1/2 x AH x BC
Diện tích tam giác ABE = 1/2 x AH x BE
= 1/2 x AH x 2/3 BC
= 1/2 x AH x BC x 2/3
= Diện tích tam giác ABC x 2/3
Vậy: Diện tích tam giác ABE = 2/3 diện tích tam giác ABC.
b) Vì chiều cao DE có D là trung điểm nên Diện tích tam giác ABE = 2 lần diện tích tam giác BDE
= 12 x 2
= 24
Diện tích tam giác ABC = 24 : 2/3
= 36
c) Diện tích hình tứ giác ADEC là: 36 - 24 = 12 ( cm vuông)
Đáp số: ...........................
a) Ta thấy chiều cao hạ từ C xuống đường thẳng AD là CA. Vậy thì
\(S_{BMC}=\frac{1}{2}.MB.CA=\frac{1}{2}.\frac{AB}{2}.AC=\frac{40.60}{4}=600\left(cm^2\right)\)
Ta thấy chiều cao hạ từ A xuống BC là AH. Vậy thì \(\frac{S_{ANB}}{S_{ABC}}=\frac{\frac{1}{2}.BN.AH}{\frac{1}{2}.BC.AH}=\frac{1}{2}\)
\(S_{ABC}=\frac{1}{2}.40.60=1200\left(cm^2\right)\Rightarrow S_{ANB}=600\left(cm^2\right)\)
b) Ta thấy tam giác BMN và tam giác ANB có chung chiều cao. Vậy \(\frac{S_{BMN}}{S_{ANB}}=\frac{MB}{AB}=\frac{1}{2}\Rightarrow S_{BMN}=600:2=300\left(cm^2\right)\)
Từ đó ta có \(S_{AMNC}=S_{ABC}-S_{BMN}=1200-300=900\left(cm^2\right)\)
c) Ta thấy tam giác MNC và tam giác BMN có chung chiều cao và đáy bằng nhau. Vậy diện tích của chúng bằng nhau.
Tam giác MNA và BMN cũng có chung chiều cao, đáy bằng nhau, vậy diện tích của chúng cũng bằng nhau.
Từ đây suy ra \(S_{MNA}=S_{MNC}\Rightarrow S_{AMO}+S_{MON}=S_{CNO}+S_{MON}\Rightarrow S_{AMO}=S_{CNO}.\)
Cho hình thang ABCD có đáy CD = AB, hai đường chéo AC và BD cắt nhau tại I. Biết tổng diện tích 2 tam giác AID và BIC là 9,1 cm2. a) So sánh diện tích 2 tam giác AID và BIC.
b) Tính diện tích hình thang ABCD