K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC có AB=AC

nên ΔABC cân tại A

=>\(\widehat{ABC}=\widehat{ACB}\)

Xét ΔBAD và ΔCAD có

AB=AC

\(\widehat{BAD}=\widehat{CAD}\)

AD chung

Do đó: ΔBAD=ΔCAD

=>BD=CD

 

2 tháng 12 2024

VậyB=C và BD=CD

 

19 tháng 1 2017

1. A B C D F 1 2 2 1 1 2. A B H D M C

1.Lấy F trên AC sao cho AB = AF mà AB < AC => AF < AC => F nằm giữa A,C

\(\Delta ADB,\Delta ADF\)có AD chung ; AB = AF ;\(\widehat{A_1}=\widehat{A_2}\)(AD là phân giác góc BAC)\(\Rightarrow\Delta ADB=\Delta ADF\left(c.g.c\right)\)

\(\Rightarrow\widehat{D_1}=\widehat{D_2}\); DB = DF mà\(\widehat{F_1}>\widehat{D_1};\widehat{D_2}>\widehat{C}\)(\(\widehat{F_1};\widehat{D_1}\)lần lượt là góc ngoài\(\Delta ADF,\Delta ADC\))nên\(\widehat{F_1}>\widehat{C}\)

\(\Delta DFC\)\(\widehat{F_1}>\widehat{C}\)nên DC > DF = DB.Vậy BD < CD

2.Theo chứng minh câu 1,ta được BD < CD

\(\Rightarrow BC=BD+CD=2BD+CD-BD\Rightarrow2BD< BC\Rightarrow BD< \frac{BC}{2}\left(=BM\right)\)

=> D nằm giữa B,M => AD nằm giữa AB,AM (1)

\(\Delta ABC\)có AB < AC nên\(\widehat{B}>\widehat{C}\)\(\widehat{BAH}=90^0-\widehat{B};\widehat{CAH}=90^0-\widehat{C}\)(vì\(\Delta AHB,\Delta AHC\)vuông tại H)

\(\Rightarrow\widehat{BAH}< \widehat{CAH}\)

\(\Rightarrow\widehat{BAC}=\widehat{BAH}+\widehat{CAH}=2\widehat{BAH}+\widehat{CAH}-\widehat{BAH}\Rightarrow2\widehat{BAH}< \widehat{BAC}\Rightarrow\widehat{BAH}< \frac{\widehat{BAC}}{2}\left(=\widehat{BAD}\right)\)

=> AH nằm giữa AB,AD (2).Từ (1) và (2),ta có đpcm

3 tháng 8 2018

làm như ngu

8 tháng 12 2016

cái này dẽ mà chỉ càn chứng minh 2 tam giác có chứa 2 cạnh đó bằng nhau là được

8 tháng 12 2016

Xét tam giác ABD và tam giác ACD ta có:

Góc BAD = góc CAD (t/chất tia phân giác)

AD cạnh chung

Góc B = góc C (gt)

=> Tam giác ABD = tam giác ACD (g.c.g)

=> BD = DC (2 cạnh tương ứng)

     AB = AC (2 cạnh tương ứng)

Mấy bài này cũng dễ mà, tự động não k đc à?

a: Xét ΔABC có BD là đường phân giác

nên AB/BC=AD/DC

=>AD/DC=AC/BC(1)

Xét ΔABC có CE là đường phân giác

nên AE/EB=AC/BC(2)

Từ (1) và (2) suy ra AD/DC=AE/EB

=>ED//BC

=>\(\widehat{EDB}=\widehat{DBC}\)

mà \(\widehat{DBC}=\widehat{EBD}\)

nên \(\widehat{EDB}=\widehat{EBD}\)

b: Xét ΔABC có DE//BC

nên AE/AB=AD/AC

mà AB=AC

nên AE=AD

hay ΔADE cân tại A

6 tháng 2 2022

AB/BC=AD/DC là vậy ạ

a: XétΔABC có AD là phân giác

nên DB/CD=AB/AC=3/4(1)

b: Xét ΔCAB có ED//AB

nên ED/EC=AB/AC(2)

từ (1) và (2) suy ra BD/CD=ED/EC

hay \(BD\cdot EC=ED\cdot CD\)

1 tháng 4 2017

Trong ΔADB, ta có:

∠B +∠(A1 ) +∠(D1) =180o (tổng 3 góc trong tam giác)

Suy ra: ∠(D1 ) =180o-(∠B +(A1)) (1)

Trong ΔADC, ta có:

∠C +∠(A2) +∠(D2) =180o (tổng 3 góc trong tam giác)

Suy ra: ∠(D2) =180o-(∠C +∠(A2) ) (2)

+) Lại có: ∠B =∠C (gỉa thiết)

∠(A1 ) =∠(A2) (vì AD là tia phân giác của góc BAC) (3)

Từ (1), (2) và (3) suy ra: ∠(D1) =∠(D2)

Xét ΔABD và ΔACD, ta có:

∠(A1 ) =∠(A2) ( Vì AD là tia phân giác của góc BAC)

AD cạnh chung

∠(D1 ) =∠(D2) ( chứng minh trên).

Vậy: ΔABD= ΔACD (g.c.g)

Vậy: AB = AC (hai cạnh tương ứng)

DB = DC (hai cạnh tương ứng)

Giải sách bài tập Toán 7 | Giải sbt Toán 7

a: Kẻ DK\(\perp\)BC

Xét ΔBAD vuông tại A và ΔBKD vuông tại K có

BD chung

\(\widehat{ABD}=\widehat{KBD}\)

Do đó: ΔBAD=ΔBKD

=>BA=BK

mà \(BA=\dfrac{1}{2}BC\)

nên \(BK=\dfrac{1}{2}CB\)

=>K là trung điểm của BC

Xét ΔDBC có

DK là đường cao

DK là đường trung tuyến

Do đó: ΔDBC cân tại D

b: ΔDBC cân tại D

=>\(\widehat{DBC}=\widehat{DCB}\)

mà \(\widehat{DBC}=\dfrac{1}{2}\cdot\widehat{ABC}\)

nên \(\widehat{ACB}=\dfrac{1}{2}\cdot\widehat{ABC}\)

ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\dfrac{1}{2}\cdot\widehat{ABC}+\widehat{ABC}=90^0\)

=>\(\dfrac{3}{2}\cdot\widehat{ABC}=90^0\)

=>\(\widehat{ABC}=90^0:\dfrac{3}{2}=90^0\cdot\dfrac{2}{3}=60^0\)

\(\widehat{ACB}=\dfrac{1}{2}\cdot\widehat{ABC}=\dfrac{1}{2}\cdot60^0=30^0\)

b: Xét ΔABD và ΔACE có

\(\widehat{BAD}\) chung

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

Do đó: ΔABD=ΔACE

Suy ra: AD=AE
hay ΔADE cân tại A

c: Xét ΔABC có 

AE/AB=AD/AC

Do đó: DE//BC

d: Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)

nên ΔOBC cân tại O