K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2024

2.2+2-2=4

 

 

xy+x-y=4

=>x(y+1)-y-1=3

=>(x-1)(y+1)=3

=>\(\left(x-1;y+1\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)

=>\(\left(x;y\right)\in\left\{\left(2;2\right);\left(4;0\right);\left(0;-4\right);\left(-2;-2\right)\right\}\)

`@` `\text {Ans}`

`\downarrow`

\((x+y)(x-y)+(xy^4-x^3y^2) \div (xy^2) \)

`= x(x-y) + y(x-y) + xy^4 \div xy^2 - x^3y^2 \div xy^2`

`= x^2 - xy + xy - y^2 + y^2 - x^2`

`= (x^2 - x^2) + (-xy + xy) + (-y^2 + y^2)`

`= 0`

13 tháng 7 2017

Đề sai rồi bạn ơi. xy=112 mới đúng nha!

\(\frac{x}{4}=\frac{y}{7}=k\Rightarrow\hept{\begin{cases}x=4k\\y=7k\end{cases}}\)

Ta có xy=112

4k.7k=112

28k2=112

k2=4

k=2, k=-2

Với k=2 thì x=8, y= 14

Với k=-2 thì x=-8, y=-14

13 tháng 7 2017

\(\frac{x}{4}=\frac{y}{7}\Leftrightarrow7x=4y\Leftrightarrow x=\frac{4y}{7}\).Thay vào biểu thức x . y = 12 . Ta được : 

\(\frac{4y}{7}\cdot y=12\Leftrightarrow4y^2=84\Leftrightarrow y^2=21\Leftrightarrow y=\sqrt{21};y=-\sqrt{21}\)

Với y = \(\sqrt{21}\)thì x = \(\frac{4\cdot\sqrt{21}}{7}\)

Với y = \(-\sqrt{21}\)thì x = \(-\frac{4\cdot\sqrt{21}}{7}\)

1 tháng 10 2023

a,xy=2

=>x=2 ; y =1 hoặc x=1 ;y=2

b,xy=6

=>x=2;y=3 hoặc x=3 ; y=3

c,xy=12

=>x=2;y=6 hoặc x=6;y=2

=>x=3;y=4 hoặc x=4;y=3

d,xy=40               (x>y) 

vì x>y

=>x=8;y=5

e,xy=30               (x<y)

vì x<y

x=5;y=6

AH
Akai Haruma
Giáo viên
10 tháng 2 2024

** Bổ sung điều kiện $x,y$ là số nguyên.

a/

$(5x-1)(y+1)=4$
Với $x,y$ nguyên thì $5x-1, y+1$ nguyên. Mà tích của chúng bằng 4 nên ta có các trường hợp sau:

TH1:  $5x-1=1, y+1=4\Rightarrow x=\frac{2}{5}$ (loại) 

TH2:  $5x-1=-1, y+1=-4\Rightarrow x=0; y=-5$

TH3:  $5x-1=2, y+1=2\Rightarrow x=\frac{3}{5}$ (loại) 

TH4: $5x-1=-2, y+1=-2\Rightarrow x=\frac{-1}{5}$ (loại)

TH5: $5x-1=4, y+1=1\Rightarrow x=1; y=0$

TH6: $5x-1=-4; y+1=-1\Rightarrow x=\frac{-3}{5}$ (loại)

Vậy......

AH
Akai Haruma
Giáo viên
10 tháng 2 2024

b/

$xy-7y+5x=0$

$y(x-7)+5(x-7)=-35$

$(x-7)(y+5)=-35$

Vì $x,y$ nguyên nên $x-7, y+5$ nguyên. $(x-7)(y+5)=-35\Rightarrow x-7$ là ước của $-35$.

Mà $x\geq 3\Rightarrow x-7\geq -4$

$\Rightarrow x-7\in \left\{-1; 1; 5; 7; 35\right\}$

Nếu $x-7=-1\Rightarrow y+5=35$

$\Rightarrow x=6; y=30$

Nếu $x-7=1\Rightarrow y+5=-35$

$\Rightarrow x=8; y=-40$

Nếu $x-7=5\Rightarrow y+5=-7$

$\Rightarrow x=12; y=-12$
Nếu $x-7=7\Rightarrow y+5=-5$

$\Rightarrow x=14; y=-10$

Nếu $x-7=35; y+5=-1$

$\Rightarrow x=42; y=-6$

26 tháng 5 2021

\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\left(1\right)\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\left(2\right)\end{matrix}\right.\).

ĐKXĐ: \(xy>0;y\ge-\dfrac{1}{2}\).

Nhận thấy nếu x < 0 thì y < 0. Suy ra VT của (1) âm, còn VP của (1) dương (vô lí)

Do đó x > 0 nên y > 0.

Với a, b > 0 ta có bất đẳng thức \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\).

Thật vậy, áp dụng bất đẳng thức Cauchy - Schwarz ta có:

\(\left(a+b\right)^4\le\left[2\left(a^2+b^2\right)\right]^2=4\left(a^2+b^2\right)^2\le8\left(a^4+b^4\right)\).

Dấu "=" xảy ra khi và chỉ khi a = b.

Áp dụng bất đẳng thức trên ta có:

\(\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^4\le8\left[8\left(x^4+y^4\right)+16x^2y^2\right]=64\left(x^2+y^2\right)^2\)

\(\Rightarrow\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\le8\left(x^2+y^2\right)\). (3)

Lại có \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2=4\left(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\right)\). (4) 

Áp dụng bất đẳng thức AM - GM ta có \(\dfrac{x^6}{y^4}+xy+xy+xy+xy\ge5x^2;\dfrac{y^6}{x^4}+xy+xy+xy+xy\ge5y^2;3\left(x^2+y^2\right)\ge6xy\).

Cộng vế với vế của các bđt trên lại rồi tút gọn ta được \(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\ge2\left(x^2+y^2\right)\). (5)

Từ (3), (4), (5) suy ra \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2\ge\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\Rightarrow2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)\ge\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\).

Do đó đẳng thức ở (1) xảy ra nên ta phải có x = y.

Thay x = y vào (2) ta được:

\(16x^5-20x^3+5x=\sqrt{\dfrac{x+1}{2}}\). (ĐK: \(x>0\))

PT này có một nghiệm là x = 1 mà sau đó không biết giải ntn :v

 

 

14 tháng 8 2020

a) \(x\left(xy+1\right)+y\left(xy-1\right)-xy\left(x+y\right)\)

\(=X^2y+x+xy^2-y-x^2y-xy^2\)

\(=x-y\)

14 tháng 8 2020

a, \(x\left(xy+1\right)+y\left(xy-1\right)-xy\left(x+y\right)\)

\(=x^2y+x+xy^2-y-x^2y-xy^2\)

\(=x-y\)

b, \(-x\left(x^2+x+1\right)+\frac{1}{2}x^2\left(2x-4\right)+x\left(x+1\right)-2\)

\(=-x^3-x^2-x+x^3-2x^2+x^2+x-2\)

\(=-2x^2-2\)

10 tháng 7 2018

\(A=\left(x+y\right).\left(x^2-xy+y^2\right)-\left(x-y\right).\left(x^2+xy+y^2\right)=\left(x^3+y^3\right)-\left(x^3-y^3\right)=2y^3\)

=> Biểu thức A phụ thuộc vào giá trị của y

10 tháng 7 2018

\(\left(x-1\right)^3+3x.\left(x-4\right)+1=0\Leftrightarrow x^3-3x^2+3x-1+3x^2-12x+1=0\)

\(\Leftrightarrow x^3-9x=0\Leftrightarrow x.\left(x^2-9\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm3\end{cases}}}\)