giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này dễ nè :
* xét p và q thuộc dạng : 3k ; 3k + 1 ; 3k+2
rồi thay vào nha
p = 2; q = 3
Cái này thì mình phải thử, p và q chỉ trong phạm vi 10 thôi.
Nhận thấy p; q≥3p; q≥3 vì p=2;q=2p=2;q=2 không thỏa mãn.
Nếu pq+11pq+11 là số nguyên tố thì nó phải là số lẻ do nó là số nguyên tố >2>2
Suy ra ít nhất11 trong22 sốpp và q bằng22 (số nguyên tố chẵn)
Giả sử p=2p=2 khi đó
7p+q=7.2+q=14+q7p+q=7.2+q=14+q
-Nếu q=2q=2thì 7p+q=7.2+2=167p+q=7.2+2=16(loại)
-Nếu q=3q=3thì pq+11=2.3+11=17pq+11=2.3+11=17(thỏa mãn)
7p+q=7.2+3=17 7p+q=7.2+3=17 (thỏa mãn)
-Nếu q=3k+1 (k∈N)q=3k+1 (k∈N) thì 7p+q=14+3k+1=3(k+5)7p+q=14+3k+1=3(k+5)(loại)
- Nếu q=3k+2 (k∈N)q=3k+2 (k∈N) thì pq+11=2q+11=2(3k+2)+11=6k+15=3(2k+5)pq+11=2q+11=2(3k+2)+11=6k+15=3(2k+5)(loại)
\Rightarrow p=2; q=3Nhận thấy p; q≥3p; q≥3 vì p=2;q=2p=2;q=2 không thỏa mãn.
Nếu pq+11pq+11 là số nguyên tố thì nó phải là số lẻ do nó là số nguyên tố >2>2
Suy ra ít nhất11 trong22 sốpp và q bằng22 (số nguyên tố chẵn)
Giả sử p=2p=2 khi đó
7p+q=7.2+q=14+q7p+q=7.2+q=14+q
-Nếu q=2q=2thì 7p+q=7.2+2=167p+q=7.2+2=16(loại)
-Nếu q=3q=3thì pq+11=2.3+11=17pq+11=2.3+11=17(thỏa mãn)
7p+q=7.2+3=17 7p+q=7.2+3=17 (thỏa mãn)
-Nếu q=3k+1 (k∈N)q=3k+1 (k∈N) thì 7p+q=14+3k+1=3(k+5)7p+q=14+3k+1=3(k+5)(loại)
- Nếu q=3k+2 (k∈N)q=3k+2 (k∈N) thì pq+11=2q+11=2(3k+2)+11=6k+15=3(2k+5)pq+11=2q+11=2(3k+2)+11=6k+15=3(2k+5)(loại)
suy ra p=2; q=3
7p + q và pq + 11 đều là số nguyên tố
pq + 11 là số nguyên tố --> pq phải là số chẵn --> hoặc p = 2 hoặc q = 2
** Nếu p = 2 --> 7p + q = 14 + q
ta thấy 14 chia 3 dư 2 ;
+) nếu q chia hết cho 3,q là số nguyên tố --> q = 3
--> 7p + q = 17 --> là số nguyên tố
--> pq + 11 = 17 --> là số nguyên tố --> thỏa
+) nếu q chia 3 dư 1 --> 14 + q chia hết cho 3 --> là hợp số --> loại
+) nếu q chia 3 dư 2 --> 2q chia 3 dư 1 --> pq + 11 = 2q + 11 chia hết cho 3 --> là hợp số --> loại
** Nếu q = 2 --> 7p + q = 2 + 7p
2 chia 3 dư 2 ;
+) nếu 7p chia hết cho 3 --> p chia hết cho 3 --> p = 3
--> 7p + q = 23
--> pq + 11 = 17 --> đều là ố nguyên tố --> thỏa
+) nếu 7p chia 3 dư 1 --> 2 + 7p chia hết cho 3 --> là hợp số --> loại
+) nếu 7p chia 3 dư 2 --> p chia 3 dư 2 --> 2p chia 3 dư 1
--> pq + 11 = 2p + 11 chia hết cho 3 --> là hợp số --> loại
Tóm lại có 2 giá trị của p ; q thỏa mãn là : p = 2 ; q = 3 hoặc p = 3 ; q = 2
7p + q và pq + 11 đều là số nguyên tố
pq + 11 là số nguyên tố --> pq phải là số chẵn --> hoặc p = 2 hoặc q = 2
** Nếu p = 2 --> 7p + q = 14 + q
ta thấy 14 chia 3 dư 2 ;
+) nếu q chia hết cho 3,q là số nguyên tố --> q = 3
--> 7p + q = 17 --> là số nguyên tố
--> pq + 11 = 17 --> là số nguyên tố --> thỏa
+) nếu q chia 3 dư 1 --> 14 + q chia hết cho 3 --> là hợp số --> loại
+) nếu q chia 3 dư 2 --> 2q chia 3 dư 1 --> pq + 11 = 2q + 11 chia hết cho 3 --> là hợp số --> loại
** Nếu q = 2 --> 7p + q = 2 + 7p
2 chia 3 dư 2 ;
+) nếu 7p chia hết cho 3 --> p chia hết cho 3 --> p = 3
--> 7p + q = 23
--> pq + 11 = 17 --> đều là ố nguyên tố --> thỏa
+) nếu 7p chia 3 dư 1 --> 2 + 7p chia hết cho 3 --> là hợp số --> loại
+) nếu 7p chia 3 dư 2 --> p chia 3 dư 2 --> 2p chia 3 dư 1
--> pq + 11 = 2p + 11 chia hết cho 3 --> là hợp số --> loại
Tóm lại có 2 giá trị của p ; q thỏa mãn là : p = 2 ; q = 3 hoặc p = 3 ; q = 2
Vi pq + 11 là số nguyên tố => Lẻ và 11 là số lẻ => pq chẵn => p hoặc q bằng 2
Nếu p = 2
=> 7p + q = 7.2 + q = 14 + q
q sẽ có 3 dạng là : 3k ; 3k+1;3k+2
Nếu q = 3k => p = 3 => 7p + q = 17 ; pq + 11 = 17 là số nguyên tố
q=3k + 1 => 7p + q = 3k + 15 chia hết cho 3 là số nguyên tố
q = 3k + 2 =>pq + 11 = 6k + 15 chia hết cho 3 là số nguyên tố
Vậy q = 3 ; p = 2
VÀ TH q = 2 bn tự xét nha
bạn "tôi học giỏi toán" sai rồi 0 và 1 đâu phải là số nguyên tố
7p + q và pq + 11 đều là số nguyên tố
pq + 11 là số nguyên tố --> pq phải là số chẵn --> hoặc p = 2 hoặc q = 2
** Nếu p = 2 --> 7p + q = 14 + q
ta thấy 14 chia 3 dư 2 ;
+) nếu q chia hết cho 3,q là số nguyên tố --> q = 3
--> 7p + q = 17 --> là số nguyên tố
--> pq + 11 = 17 --> là số nguyên tố --> thỏa
+) nếu q chia 3 dư 1 --> 14 + q chia hết cho 3 --> là hợp số --> loại
+) nếu q chia 3 dư 2 --> 2q chia 3 dư 1 --> pq + 11 = 2q + 11 chia hết cho 3 --> là hợp số --> loại
** Nếu q = 2 --> 7p + q = 2 + 7p
2 chia 3 dư 2 ;
+) nếu 7p chia hết cho 3 --> p chia hết cho 3 --> p = 3
--> 7p + q = 23
--> pq + 11 = 17 --> đều là ố nguyên tố --> thỏa
+) nếu 7p chia 3 dư 1 --> 2 + 7p chia hết cho 3 --> là hợp số --> loại
+) nếu 7p chia 3 dư 2 --> p chia 3 dư 2 --> 2p chia 3 dư 1
--> pq + 11 = 2p + 11 chia hết cho 3 --> là hợp số --> loại
Vậy p = 2 ; q = 3 hoặc p = 3 ; q = 2
7p + q và pq + 11 đều là số nguyên tố
pq + 11 là số nguyên tố --> pq phải là số chẵn --> hoặc p = 2 hoặc q = 2
** Nếu p = 2 --> 7p + q = 14 + q
ta thấy 14 chia 3 dư 2 ;
+) nếu q chia hết cho 3,q là số nguyên tố --> q = 3
--> 7p + q = 17 --> là số nguyên tố
--> pq + 11 = 17 --> là số nguyên tố --> thỏa
+) nếu q chia 3 dư 1 --> 14 + q chia hết cho 3 --> là hợp số --> loại
+) nếu q chia 3 dư 2 --> 2q chia 3 dư 1 --> pq + 11 = 2q + 11 chia hết cho 3 --> là hợp số --> loại
** Nếu q = 2 --> 7p + q = 2 + 7p
2 chia 3 dư 2 ;
+) nếu 7p chia hết cho 3 --> p chia hết cho 3 --> p = 3
--> 7p + q = 23
--> pq + 11 = 17 --> đều là ố nguyên tố --> thỏa
+) nếu 7p chia 3 dư 1 --> 2 + 7p chia hết cho 3 --> là hợp số --> loại
Ko chắc lắm
+) nếu 7p chia 3 dư 2 --> p chia 3 dư 2 --> 2p chia 3 dư 1
--> pq + 11 = 2p + 11 chia hết cho 3 --> là hợp số --> loại
Vậy p = 2 ; q = 3 hoặc p = 3 ; q = 2
Câu 3.1
+ Vì p; q đều là số nguyên tố nên p.q > 2 mà pq + 11 là số nguyên tố nên pq + 11 là số lẻ.
+ Vì 11 là số lẻ thì pq là số chẵn. Vậy p, q phải có ít nhất một số là số chẵn.
a; Nếu p = 2 ta có: 14 + q \(\in\) P và 2q + 11 \(\in\) P
+ Nếu q = 2 ta có: 14 + 2 = 16 (loại vì 16 không phải là số nguyên tố)
+ Nếu q = 3 ta có: \(\left\{{}\begin{matrix}14+q=14+3=17\left(tm\right)\\2.q+11=2.3+11=17\left(tm\right)\end{matrix}\right.\)
+ Nếu q > 3 thì q có dạng: q = 3k + 1 hoặc 3k + 2
Trường hợp 1: q = 3k + 1 thì
14 + q = 14 + 3k + 1 = (14 + 1) + 3k = 15 + 3k ⋮ 3 (loại vì đây là hợp số)
Trường hợp 2: q = 3k + 2 thì:
2q + 11 = 2.(3k + 2) + 11 = 6k + 4 +11 = 6k + (4 + 11) = 6k + 15 ⋮ 3(loại vì đây là hợp số)
b; Nếu q = 2 ta có: 7p + 2 \(\in\) P và 2p + 11 \(\in\) P
Chứng minh tương tự ta có: q = 2 và p = 3
Từ những lập luận và phân tích trên ta có các cặp số nguyên tố p và q thỏa mãn đề bài là:
(p; q) = (2; 3); (3; 2)
Câu 4:
Gọi chiều rộng khu đất là x(m)
(Điều kiện: x>0)
Chiều dài khu đất là 3x(m)
Chiều rộng khu đất sau khi tăng thêm 3m là x+3(m)
Chiều dài khu đất sau khi giảm đi 3m là 3x-3(m)
Diện tích tăng thêm 75m2 nên ta có:
\(\left(3x-3\right)\left(x+3\right)-3x\cdot x=75\)
=>\(3x^2+9x-3x-9-3x^2=75\)
=>6x=9+75=84
=>x=14(nhận)
Vậy: Chiều rộng khu đất là 14m
Chiều dài khu đất là 14*3=42m
Câu 4: Số học sinh khối 6 tham dự là:
\(250\cdot40\%=100\left(bạn\right)\)
Tổng số học sinh khối 7 và khối 8 tham dự là:
250-100=150(bạn)
Tỉ số giữa số học sinh khối 7 và khối 8 là:
\(\dfrac{4}{7}:\dfrac{1}{2}=\dfrac{8}{7}\)
Số học sinh khối 7 tham dự là:
\(150\cdot\dfrac{8}{7+8}=150\cdot\dfrac{8}{15}=80\left(bạn\right)\)
Số học sinh khối 8 tham dự là:
150-80=70(bạn)