Tìm x ϵ N, sao cho:
a) x(2x - 10) = 0
b) (x + 1). (x - 2) = 0
c) \(\left(9-x\right)^3\)= 64
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
1,
\(Ư\left(250\right)=\left\{1;2;5;10;25;50;125;250\right\}\)
Các số có hai chữ số thuộc Ư(250) là 10;25;50
2,
\(B\left(11\right)=\left\{0;11;22;33;44;55;66;77;88;99;110;121;132;143;154;165;....\right\}\)
Các số có hai chữ số thuộc về B(11) là 11;22;33;44;55;66;77;88;99
Bài 3:
B(3) là các số chia hết cho 3, dấu hiệu là tổng các chữ số của số đó là một số chia hết cho 3, bao gồm: 126; 201; 312; 345; 501; 630
B(5) là các số chia hết cho 5, dấu hiệu tận cùng các số đó là 0 hoặc 5, bao gồm: 125; 205; 220; 345; 595; 630; 1780
a, Vì : \(6⋮x-1\Rightarrow x-1\inƯ\left(6\right)\)
Mà : \(Ư\left(6\right)=\left\{1;2;3;6\right\}\Rightarrow x\in\left\{2;3;4;7\right\}\)
Vậy ...
b,Vì : \(14⋮2x+3\Rightarrow2x+3\inƯ\left(14\right)\)
Mà : \(Ư\left(14\right)=\left\{1;2;7;14\right\}\) ; \(2x+3\ge3\Rightarrow2x+3\in\left\{7;14\right\}\)
Ta có : 2x + 3 là số lẻ
=> 2x + 3 = 7
=> 2x = 4 => x = 2
Vậy x = 2
c, \(x-1⋮12\Rightarrow x-1\in B\left(12\right)\)
Mà : \(B\left(12\right)=\left\{0;12;24;36;...\right\}\) ; 0 < x < 30
\(\Rightarrow x-1\in\left\{12;24\right\}\)
\(\Rightarrow x\in\left\{13;25\right\}\)
Vậy ...
\(a,\left(x-1\right)^2=0\\ \Leftrightarrow x=1\\ b,\left(x-3\right)^2=1\\ \Leftrightarrow\left[{}\begin{matrix}x-3=1\\x-3=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
a) \(\left(x-1\right)^2=0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
b) \(\left(x-3\right)^2=1\)
\(\Rightarrow\left(x-3\right)^2=1^2\)
\(\Rightarrow\left[{}\begin{matrix}x-3=-1\\x-3=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
Bài 1:
a) (2x-3). (x+1) < 0
=>2x-3 và x+1 ngược dấu
Mà 2x-3<x+1 với mọi x
\(\Rightarrow\begin{cases}2x-3< 0\\x+1>0\end{cases}\)
\(\Rightarrow\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)\(\Rightarrow-1< x< \frac{3}{2}\)
b)\(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)
\(\Rightarrow x-\frac{1}{2}\) và x+3 cùng dấu
Xét \(\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\)\(\Rightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\)
Xét \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)\(\Rightarrow\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)
=>....
Bài 2:
\(S=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{999.1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{999}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\cdot\frac{998}{3003}\)
\(=\frac{499}{3003}\)
Lời giải:
a. $2y(3x-1)+9x-3=7$
$2y(3x-1)+3(3x-1)=7$
$(3x-1)(2y+3)=7$
Vì $3x-1, 2y+3$ đều là số nguyên với mọi $x,y\in N$, và $2y+3>0$ nên ta có bảng sau:
b.
$3xy-2x+3y-9=0$
$x(3y-2)+3y-9=0$
$x(3y-2)+(3y-2)-7=0$
$(3y-2)(x+1)=7$
Đến đây bạn cũng lập bảng tương tự như phần a.
3/ Ta có:
\(A=\dfrac{1-2x}{x+3}\)
\(A=\dfrac{-2x+1}{x+3}\)
\(A=\dfrac{-2x-6+7}{x+3}\)
\(A=\dfrac{-2\left(x+3\right)+7}{x+3}\)
\(A=-2+\dfrac{7}{x+3}\)
A nguyên khi \(\dfrac{7}{x+3}\) nguyên
⇒ 7 ⋮ \(x+3\)
\(\Rightarrow x+3\inƯ\left(7\right)\)
\(\Rightarrow x+3\in\left\{1;-1;7;-7\right\}\)
\(\Rightarrow x\in\left\{-2;-4;4;-10\right\}\)
a; \(x\)(2\(x\) - 10) = 0
\(\left[{}\begin{matrix}x=0\\2x-10=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\2x=10\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=\dfrac{10}{2}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
Vậy \(x\) \(\in\) {0; 5}
b; (\(x+1\)).(\(x-2\)) = 0
\(\left[{}\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
Vì \(x\) \(\in\) N nên \(x=-1\) loại
Vậy \(x\) = 2