Giải hệ phương trình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x,y\ne0\)
Hệ pt \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6x+6y}{xy}=5\\\dfrac{4}{x}+\dfrac{3}{y}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{x}+\dfrac{6}{y}=5\\\dfrac{4}{x}+\dfrac{3}{y}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{x}+\dfrac{6}{y}=5\\\dfrac{3}{y}=1-\dfrac{4}{x}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{x}+2.\left(1-\dfrac{4}{x}\right)=5\\\dfrac{3}{y}=1-\dfrac{4}{x}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{x}+2-\dfrac{8}{x}=5\\\dfrac{3}{y}=1-\dfrac{4}{x}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-2}{x}=3\\\dfrac{3}{y}=1-\dfrac{4}{x}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-2}{3}\\y=\dfrac{3}{7}\end{matrix}\right.\)(tm)
Vậy...
Lời giải:
Ta có:
HPT \(\Leftrightarrow \left\{\begin{matrix} 6x+6y=5xy\\ 4y-3x=xy\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} 6x+6y=5xy\\ 20y-15x=5xy\end{matrix}\right.\)
Lấy PT(1) - PT(2):
\(6x+6y-(20y-15x)=0\)
\(\Leftrightarrow 21x=14y\Leftrightarrow 3x=2y\Rightarrow y=1,5x\)
Thay vào PT ban đầu:
\(6x+6.1,5x=5x.1,5x\)
\(\Leftrightarrow 15x=7,5x^2\Leftrightarrow x(7,5x-15)=0\)
Vì $x\neq 0$ nên \(7,5x-15=0\Leftrightarrow x=2\Rightarrow y=1,5.2=3\)
Vậy $(x,y)=(2,3)$
a: =>2/x+2/y=2 và 4/x-2/y=1
=>6/x=3 và 1/x+1/y=1
=>x=2 và 1/y=1-1/2=1/2
=>x=2; y=2
b: Đặt 1/x=a; 1/y=b
=>1/3a+1/3b=1/4 và 5/6a+b=2/3
=>a=1/2; b=1/4
=>x=2; y=4
a.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge2\\y\ge3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\5\sqrt{x-2}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\\sqrt{x-2}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{y-3}=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=7\end{matrix}\right.\)
b.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-1\\y\ne-4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{15x}{x+1}+\dfrac{10}{y+4}=20\\\dfrac{4x}{x+1}-\dfrac{10}{y+4}=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{15x}{x+1}+\dfrac{10}{y+4}=20\\\dfrac{19x}{x+1}=28\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{x+1}=\dfrac{28}{19}\\\dfrac{1}{y+4}=-\dfrac{4}{19}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}19x=28x+28\\4y+16=-19\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{28}{9}\\y=-\dfrac{35}{4}\end{matrix}\right.\)
Lời giải:
Phương hướng giải là bạn sử dụng phương pháp thế, biểu diễn $x$ theo $y$ qua 1 trong 2 PT, sau đó thế vô PT còn lại giải PT 1 ẩn $y$
a) \(\left\{\begin{matrix}
x-6y=17\\
5x+y=23\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
x=17+6y\\
5x+y=23\end{matrix}\right.\)
\(\Rightarrow 5(17+6y)+y=23\)
\(\Leftrightarrow 31y=-62\Leftrightarrow y=-2\)
$x=17+6y=17+6(-2)=5$
Vậy $(x,y)=(5,-2)$
Các phần còn lại bạn giải tương tự
b) $(x,y)=(\frac{1}{4}, 0)$
c) $(x,y)=(3, 4)$
d) $(x,y)=(\frac{79}{21}, \frac{44}{21})$
a: =>xy-2x+2y-4=xy+y và 5xy+10x+y+2=5xy-10x-2y+4
=>-2x+y=4 và 20x+3y=2
=>x=-5/13; y=42/13
b: =>4x+2|y|=8 và 4x-3y=1
=>2|y|-3y=7 và 4x-3y=1
TH1: y>=0
=>2y-3y=7 và 4x-3y=1
=>-y=7 và 4x-3y=1
=>y=-7(loại)
TH2: y<0
=>-2y-3y=7 và 4x-3y=1
=>y=-7/5; 4x=1+3y=1-21/5=-16/5
=>x=-4/5; y=-7/5
a) Ta có: \(\left\{{}\begin{matrix}\sqrt{2}x-y=3\\x+\sqrt{2}y=\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2}x-y=3\\\sqrt{2}x+2y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3y=1\\x+\sqrt{2}y=\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{1}{3}\\x=\sqrt{2}-\sqrt{2}y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{1}{3}\\x=\sqrt{2}-\sqrt{2}\cdot\dfrac{-1}{3}=\dfrac{4\sqrt{2}}{3}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{4\sqrt{2}}{3}\\y=-\dfrac{1}{3}\end{matrix}\right.\)
b) Ta có: \(\left\{{}\begin{matrix}\dfrac{x}{2}-2y=\dfrac{3}{4}\\2x+\dfrac{y}{3}=-\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-8y=3\\2x+\dfrac{1}{3}y=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{25}{3}y=\dfrac{10}{3}\\2x-8y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{2}{5}\\2x=3+8y=3+8\cdot\dfrac{-2}{5}=-\dfrac{1}{5}\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}x=-\dfrac{1}{10}\\y=-\dfrac{2}{5}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=-\dfrac{1}{10}\\y=-\dfrac{2}{5}\end{matrix}\right.\)
c) Ta có: \(\left\{{}\begin{matrix}\dfrac{2x-3y}{4}-\dfrac{x+y-1}{5}=2x-y-1\\\dfrac{x+y-1}{3}+\dfrac{4x-y-2}{4}=\dfrac{2x-y-3}{6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5\left(2x-3y\right)}{20}-\dfrac{4\left(x+y-1\right)}{20}=\dfrac{20\left(2x-y-1\right)}{20}\\\dfrac{4\left(x+y-1\right)}{12}+\dfrac{3\left(4x-y-2\right)}{12}=\dfrac{2\left(2x-y-3\right)}{12}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10x-15y-4x-4y+4=40x-20y-20\\4x+4y-4+12x-3y-6=4x-2y-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x-19y+4-40x+20y+20=0\\16x+y-10-4x+2y+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-34x+y=-24\\12x+3y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-102x+3y=-72\\12x+3y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-114x=-76\\12x+3y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\12\cdot\dfrac{2}{3}+3y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\3y=4-8=-4\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-\dfrac{4}{3}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-\dfrac{4}{3}\end{matrix}\right.\)
6. \(\left\{{}\begin{matrix}2y-4=0\\3x+y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\3x+2=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-2\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}4x-6y=2\\x-\dfrac{3}{2}y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2+6y}{4}\\\dfrac{2+6y}{4}-\dfrac{3}{2}y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2+6y}{4}\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=-2\end{matrix}\right.\)
8. \(\left\{{}\begin{matrix}\dfrac{x}{3}+\dfrac{y}{2}=1\\2x+3y=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\left(1-\dfrac{y}{2}\right).3\\6\left(1-\dfrac{y}{2}\right)+3y=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\left(1-\dfrac{y}{2}\right)\\y=\left(VNghiệm\right)\end{matrix}\right.\Leftrightarrow\) không tồn tại x, y
(Các câu khác tương tự nhé.)
\(\left\{{}\begin{matrix}6x+6y=5xy(1)\\\dfrac{4}{x}-\dfrac{3}{y}=1\end{matrix}\right.\)
Chia 2 vế cho xy thì (1)(vì `x,y ne 0`)
`<=>` $\begin{cases}\dfrac6x+\dfrac6y=5\\\dfrac{4}{x}-\dfrac{3}{y}=1\\\end{cases}$
`<=>` $\begin{cases}\dfrac6x+\dfrac6y=5\\\dfrac{8}{x}-\dfrac{6}{y}=2\\\end{cases}$
`<=>` $\begin{cases}\dfrac{14}{x}=7\\\dfrac6x+\dfrac6y=5\\\end{cases}$
`<=>` $\begin{cases}\dfrac{14}{x}=7\\\dfrac6x+\dfrac6y=5\\\end{cases}$
`<=>` $\begin{cases}x=2\\y=3\\\end{cases}$
Vậy HPT có nghiệm (x,y)=(2,3)
\(\left\{{}\begin{matrix}3x-3y=5\\5x+2y=23\end{matrix}\right.< =>\left\{{}\begin{matrix}6x-6y=10\\15x+6y=69\end{matrix}\right.< =>\left\{{}\begin{matrix}21x=79\\3x-3y=5\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=\dfrac{79}{21}\\y=\dfrac{44}{21}\end{matrix}\right.\)
vậy hệ pt có nghiệm (x,y)=(\(\dfrac{79}{21};\dfrac{44}{21}\))