K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2017

Lấy điểm I trong hình vuông ABCD sao cho tam giác IBC cân và có góc đáy bằng 15°. Ta tính được góc BIC = 150° 

Ta có: ΔIBC = ΔEAB ⇒ IB = EB 

Lại có: góc EBI = 90° - 15° - 15° = 60° 

⇒ ΔEBI đều 

⇒ IE = IB = IC 

⇒ ΔIEC cân tại I 

⇒ góc EIC = 360° - góc BIC - góc EIB = 360° - 150° - 60° = 150° 

Tam giác cân IEC có góc ở đỉnh bằng 150° nên góc ICE = 15° 

góc ECD = 90° - góc ICB - góc ICE = 90° - 15° - 15° = 60° 

Tương tự cho góc kia: góc EDC = 60° 

Vậy tam giác DEC đều.

2 tháng 5 2020

Có làm thì mới có bài, không làm muốn có bài thì chỉ ăn cơm ăn đầu lợn

19 tháng 2 2020

Ta có : ADCˆ=ADEˆ+EDCˆADC^=ADE^+EDC^

=> 90O=ADEˆ+15O90O=ADE^+15O

=> ADEˆ=75OADE^=75O

Tương tự ta cũng có : BCEˆ=75oBCE^=75o

Xét ΔADEΔADE và ΔBCEΔBCE có :

AD = BC (do ABCD à hình vuông)

ADEˆ=BCEˆ(=75o)ADE^=BCE^(=75o)

DE=ECDE=EC (do tam giác ECD cân tại E- gt)

=> ΔADEΔADE = ΔBCEΔBCE (c.g.c)

=> AE = BE (2 cạnh tương ứng)

Mà : AD = AE

=> ΔADEΔADE cân tại A

Xét ΔADEΔADE ta có :

ADEˆ=AEDˆ=75oADE^=AED^=75o (tính chất tam giác cân)

=> DAEˆ=180O−(ADEˆ+AEDˆ)DAE^=180O−(ADE^+AED^)

=> DAEˆ=180O−2.75O=30ODAE^=180O−2.75O=30O

Chứng minh tương tự ta có : CBEˆ=30oCBE^=30o

Có : ABEˆ=ABCˆ−CBEˆ=90O−30O=60OABE^=ABC^−CBE^=90O−30O=60O

BAEˆ=BADˆ−EADˆ=90O−30O=60OBAE^=BAD^−EAD^=90O−30O=60O

Xét ΔABEΔABE có :

ABEˆ+BAEˆ+AEBˆ=180OABE^+BAE^+AEB^=180O

=> AEBˆ=180O−2.60O=60OAEB^=180O−2.60O=60O

Thấy : ABEˆ=BAEˆ=AEBˆ=60oABE^=BAE^=AEB^=60o

=> ΔABEΔABE là tam giác đều (đpcm)

CHÚC   MAY   MẮN

19 tháng 2 2020

hình tự vẽ
Vì EDC cân nên:
EDC=ECD=15
Ta có: ADE+EDC=90
   =>   ADE          =90-15=75
Tương tự, ta có: BCE+ECD=90
                  =>     BCE         =90-15=75
Xét 2 tam giác AED và BEC có:
 -góc AED=góc BEC ( đối đỉnh)
-ED=EC( tam giác EDC cân)
-góc ADE=goscBCE(cmt)
suy ra hai tam giác AED và BEC bằng nhau
==>AE=BE(2 cạnh tương ứng)
xét tam giác AEB có AE=AB=> tam giác AEB cân(đpcm)


 

31 tháng 3 2018

c) Xét \(\Delta AEP\) và \(\Delta AEB\)

có: AP=AB ( p b)

góc BAE = góc PAE ( p a)

AE là cạnh chung

\(\Rightarrow\Delta AEP=\Delta AEB\left(c-g-c\right)\)

\(\Rightarrow\widehat{APE}=\widehat{ABE}=90^0\)( 2 góc tương ứng )

\(\Rightarrow\widehat{APE}=90^0\)

\(\Rightarrow AP\perp PE⋮P\)( định lí) (1)

Ta có: góc BAE + góc PAE + góc PAF + góc FAD = góc BAD

thay số: 15       + 15            + góc PAF + 30           = 90

                                               góc PAF                   = 90 -15 -15 -30

                                             góc PAF                    = 30

=> góc PAF = góc FAD ( = 30 độ)

Xét tam giác AFP va tam giác AFD

có: AP = AD ( p b)

góc PAF = góc FAD ( cmt)

AF là cạnh chung

\(\Rightarrow\Delta AFP=\Delta AFD\left(c-g-c\right)\)

\(\Rightarrow\widehat{APF}=\widehat{ADF}=90^0\)( 2 góc tương ứng)

\(\Rightarrow\widehat{APF}=90^0\)

\(\Rightarrow AP\perp PF⋮P\)( định lí) (2)

Từ (1); (2) => E;P;F thẳng hàng

3 tháng 9 2018

Bài 2:

kẻ hình thang ABCD

  

kẻ 2 đường cao AH và BK nối B với H

xét tam giác ABH và tam giác KBH

có ^ABH = ^KBH ( 2gocs so le trong )

HB chung

=> tam giác ABH = tam giác KBH (cạnh huyền +góc nhọn )

=> AB =HK ( 2 cạnh tương ứng )

xét tam giác BKC có BC>KC ( trong tam giác vuông cạnh huyền là cạnh lớn nhất )(1)

xét tam giác AHD có AD>HD (trong tam giác vuông cạnh huyền là cạnh lớn nhất)(2)

từ (1) và (2) => BC+AD >KC+HD

ta lại có DH+DK +HK =DC

mà AB=HK (C/m )

=> DH+DK+AB =dc

ta có DC-AB = DH+DK+AB-AB= DH+DK

mà DH+DK<BC+AD(c/m)

=>DC -AB< BC+AD

vậy tổng hai cạnh bên của hình thang lớn hơn hiệu hai đáy

     Bài 1: Cho hình vuông ABCD, E là điểm thuộc cạnh DC, F là điểm trên tia đối của tia BC sao cho BF=DE.a/ chứng minh tam giác AEF vuông cân.b/ Gọi I là trung điểm EF. Lấy K đối xứng với A qua I. Chứng minh tứ giác AEKF là hình vuông.     Bài 2: cho tam giác ABC vuông tại A có góc ABC=60 độ, kẻ tia Ax song song với BC. Trên tia Ax lấy D sao cho AD = DC.a/ Tính các góc BAD và DAC.b/ chứng minh ABCD là hình thang cân.c/...
Đọc tiếp

     Bài 1: Cho hình vuông ABCD, E là điểm thuộc cạnh DC, F là điểm trên tia đối của tia BC sao cho BF=DE.
a/ chứng minh tam giác AEF vuông cân.
b/ Gọi I là trung điểm EF. Lấy K đối xứng với A qua I. Chứng minh tứ giác AEKF là hình vuông.
     Bài 2: cho tam giác ABC vuông tại A có góc ABC=60 độ, kẻ tia Ax song song với BC. Trên tia Ax lấy D sao cho AD = DC.
a/ Tính các góc BAD và DAC.
b/ chứng minh ABCD là hình thang cân.
c/ gọi E là trung điểm BC. Chứng minh ADEB là hình thoi.
d/ cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED.
     Bài 3: cho tam giác ABC có hai trung tuyến BD và CE cắt nhau tại G. Gọi M, N lần lượt là trung điểm của BG và CG.
a/ chứng minh MNDE là hình bình hành.
b/ điều kiện của tam giác ABC để hình bình hành MNDE là hình chữ nhật, hình thoi.
c/ chứng minh DE + MN = BC.

~~~~~~~~~~~GIÚP MK VS CÁC BẠN LÀM BÀI NÀO CŨNG ĐƯỢC~~~~~~~~~~~~~~~~~

2
12 tháng 11 2017

Bài này có gì đâu em ! Anh làm nhé !

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE

22 tháng 11 2017

Câu 4: Cho tam giác ABC vuông tại A. Biết AB=5cm, BC=13cm. Gọi H, K lần Lượt là trung điểm của AB và BC. Tính độ dài HK

giúp mình nhoa!!

27 tháng 5 2022

undefined

*Dựng △ADE đều.

\(\widehat{ODC}=\widehat{OCD}=15^0\Rightarrow\)△DOC cân tại O.

\(\Rightarrow OD=OC;\widehat{DOC}=180^0-2\widehat{ODC}=180^0-2.15^0=150^0\)

\(\widehat{BAE}=\widehat{CDE}=90^0-\widehat{ADE}=90^0-60^0=30^0\)

\(AB=AE=DE=DC=AD\).

\(\Rightarrow\)△DCE cân tại D, △ABE cân tại A.

\(\Rightarrow\widehat{DCE}=\widehat{ABE}=\dfrac{180^0-\widehat{BAE}}{2}=\dfrac{180^0-30^0}{2}=75^0\).

\(\Rightarrow\widehat{ECB}=\widehat{EBC}=90^0-\widehat{DCE}=90^0-75^0=15^0\)

\(\widehat{OCE}=90^0-\widehat{OCD}-\widehat{BCE}=90^0-15^0-15^0=60^0\)

△DOC và △BEC có: \(\widehat{ODC}=\widehat{EBC}=15^0;\widehat{OCD}=\widehat{ECB}=15^0;DC=BC\)

\(\Rightarrow\)△DOC=△BEC (g-c-g)

\(\Rightarrow OD=BE=OC=EC\)

\(\Rightarrow\)△OCE cân tại C mà \(\widehat{OCE}=60^0\)

\(\Rightarrow\)△OCE đều.

\(\widehat{OEB}=360^0-\widehat{OEC}-\widehat{BEC}=360^0-60^0-150^0=150^0\)

\(OE=CE=EB\Rightarrow\)△OEB cân tại E.

\(\Rightarrow\widehat{OBE}=\dfrac{180^0-\widehat{OEB}}{2}=\dfrac{180^0-150^0}{2}=15^0\)

\(\widehat{OBA}=90^0-\widehat{OBE}-\widehat{CBE}=90^0-15^0-15^0=60^0\)

Mà △OAB cân tại O \(\Rightarrow\)△OAB đều.

 

 

 

24 tháng 1 2019

a, xét tam giác ABE và tam giác ACD có:

AB=AC(gt); góc A chung; AD=AE(gt)

suy ra tam giác ABE= tam giác ACD(c.g.c)

suy ra BE=CD(đpcm)

24 tháng 1 2019

b, do 2 tam giác ABE và ACD bằng nhau

suy ra góc ABE = góc ACD

mạt khác ABC=ACB(gt)

suy ra góc EBC= góc DCB

suy ra tam giác KBC cân tại K