So sánh:
2mũ300 và 4mũ150
2 mũ 300 và 3 mũ 200
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(2^{300}=2^{3\cdot100}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=3^{2\cdot100}=\left(3^2\right)^{100}=9^{100}\)
Mà: \(8< 9\)
\(\Rightarrow8^{100}< 9^{100}\)
\(\Rightarrow2^{300}< 3^{200}\)
b) Ta có:
\(3^{500}=3^{5\cdot100}=\left(3^5\right)^{100}=243^{100}\)
\(7^{300}=7^{3\cdot100}=\left(7^3\right)^{100}=343^{100}\)
Mà: \(243< 343\)
\(\Rightarrow243^{100}< 343^{100}\)
\(\Rightarrow3^{500}< 7^{300}\)
c) Ta có:
\(8^5=\left(2^3\right)^5=2^{3\cdot5}=2^{15}=2\cdot2^{15}\)
\(3\cdot4^7=3\cdot\left(2^2\right)^7=3\cdot2^{2\cdot7}=3\cdot2^{14}\)
Mà: \(2< 3\)
\(\Rightarrow2\cdot2^{14}< 3\cdot2^{14}\)
\(\Rightarrow8^5< 3\cdot4^7\)
d) Ta có:
\(202^{303}=202^{3\cdot101}=\left(202^3\right)^{101}=8242408^{101}\)
\(303^{202}=303^{2\cdot101}=\left(303^2\right)^{101}=91809^{101}\)
Mà: \(8242408>91809\)
\(\Rightarrow8242408^{101}>91809^{101}\)
\(\Rightarrow202^{303}>303^{202}\)
2^300 = (2³)^100 = 8^100
3^200 = (3²)^100 = 9^100
Vì 8 < 9 nên 8^100 < 9^100 =>2^300 < 3^200.
\(2^{300}=2^{3\times100}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=3^{2\times100}=\left(3^2\right)^{100}=9^{100}\)
vì 8^100< 9^100 nên 2^300<3^200
Có: 3200=(32)100=9100
2300=(23)100=8100
=>9100>8100
<=>3200>2300
Vậy....
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Vì\(8< 9\Rightarrow8^{100}< 9^{100}\Leftrightarrow2^{300}< 3^{200}\)
c, \(2^{300}\)và \(3^{200}\)
Ta có
\(2^{300}=8^{100}\)
\(3^{200}=9^{100}\)
Vì \(8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)
d, \(3^{300}\)và \(4^{200}\)
Ta có
\(3^{300}=27^{100}\)
\(4^{200}=16^{100}\)
Vì \(16^{100}< 27^{100}\Rightarrow3^{300}>4^{200}\)
a,b mik lười làm quá
a, Ta có: S = 10 + 12 + 14 + ... + 2010
Các số hạng cách đều nhau 2 đơn vị.
Có số số hạng là: ( 2010 - 10 ) / 2 + 1 = 500 (số)
\(\Rightarrow\)S = ( 2010 +10 ) * 500 / 2
\(\Rightarrow\)S = 505000
Vậy S = 505000
b, Ta có: S = 1 + 2 + 3 + ... + 999
Các số hạng cách đều nhau 1 đơn vị.
Có số số hạng là: ( 999 - 1 ) / 1 +1 = 999 (số)
\(\Rightarrow\) S = ( 999 + 1 ) * 999 / 2 = 499500
Vậy S = 499500
c, 2300 và 3200
Ta có: 2300 = (23)100 = 8100
3200 = (32)100 = 9100
Vì 9 > 8 > 1 và 100 > 0
\(\Rightarrow\)9100 > 8100
Hay 2300 = 3200
Vậy 2300 = 3200
d, 3300 và 4200
Ta có: 3300 = (33)100 = 27100
4200 = (42)100 = 16100
Vì 27 > 16 > 1 và 100 > 0
\(\Rightarrow\)27100 > 16100
Hay 3300 > 4200
Vậy 3300 > 4200
2300 = ( 23)100 = 8100
3200 = ( 32)100 = 9100
vậy 8 mũ 100 < 9 mũ 100
nên 2 mũ 300 < 3 mũ 200
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
mà \(9^{100}>8^{100}\Rightarrow3^{200}>2^{300}\)
Vậy,.........
a)\(8^{300}=\left(2^3\right)^{300}=2^{900}\)
Vì \(200< 900\Rightarrow2^{200}< 8^{300}\)
b)\(25^{200}=\left(5^2\right)^{200}=5^{400}\)
Vì \(400>300\Rightarrow25^{200}>5^{300}\)
c)\(64^7=\left(4^3\right)^7=4^{21}\)
Vì \(4^{21}=4^{21}\Rightarrow4^{21}=64^7\)
\(5^{200}=25^{100}\)
\(3^{300}=27^{100}\)
mà 25<27
nên \(5^{200}< 3^{300}\)
\(I-2I^{300}vàI-4I^{500}\)
ta có I -2I ^300 = 2^300
I-4I^500= 4^500= 2^2^500= 2^1000
vậy I-4I mũ 500 lớn hơn
a) 2011 . 2013 = 2011 . ( 2012 + 1 ) = 2011 . 2012 + 2011
20122 = 2012 . 2012 = ( 2011 + 1 ) . 2012 = 2011 . 2012 + 2012
Vì 2011 . 2012 + 2011 < 2011 . 2012 + 2012 nên 2011 . 2013 < 20122
2^300 và 4^150
Có : 2^300 = 2^2.150 = (2^2)^150 = 4^150
=> 2^300 = 4^150
2^300 và 3^200
Có : 2^300 = 2^100.3 = (2^3)^100 = 8^100
3^2 = 3^2.100 = (3^2)^100 = 9^100
Vì 8^100 < 9^100 => 2^300 < 3^200
k mk nha
a )Ta có : \(2^{300}=\left(2^2\right)^{150}=4^{150}\)
Vì \(4^{150}=4^{150}\)
\(\Rightarrow2^{300}=4^{150}\)
b) Ta có :\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Vì \(9^{100}>8^{100}\)
\(\Rightarrow2^{300}< 3^{200}\)