K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2017

Vì p nguyên tố > 3 nên p ko chia hết cho 2 ; 3

=> p ko thể có dạng 6k ( chia hết cho 2 ) ; 6k+2 ( chia hết cho 2 ) ; 6k+3 ( chia hết cho 3 ) ; 6k+4 ( chia hết cho 2 )

=> p có dạng 6k+1 hoặc 6k+5

k mk nha

30 tháng 12 2015

 p là số nguyên tố lớn hơn 3 nên p lẻ p không có dạng : 

6k + 2 , 6k + 4 , 6k ( chia hết cho 2) 

Hơn nữa, p cũng không chia hết cho 3 p không có dạng: 

6k + 3 ( chia hết cho 3) 

Vậy p chỉ có dạng 6k+1 hoặc 6k+5

30 tháng 12 2015

Mọi số tự nhien lớn hơn 3 khi chia hết cho 6 có 1 trong các số dư :0,1,2,3,4,5,

TH1:p chia 6 dư 0 suy ra :p=6k là hợp số(loại)

TH2:p chia 6 dư 1 suy ra p=6k+1

TH3:p chia 6 dư 2 suy ra p =6k+2 là hợp số (loại)

TH4;p chia 6 dư 3 suy ra p=6k+3 là hợp số (loại_)

TH5:p chia 6 dư 4 suy ra p=6k+4 là hợp số (loại)

TH6:p chia 6 dư 5 suy ra p=6k+5

Vậy p có dạng 6k+1 hoặc 6k+5

 

12 tháng 12 2014

Mình biết làm câu a nhưng không chắc chắn lắm đâu : Mình xét các trường hợp số dư từ 1 đến 5

p:6 dư 1=>p=6k+1 (thỏa mãn)

p:6 dư 2=>p=6k+2 mà 6k+2 chia hết cho 2(loại)

p:6 dư 3=>p=6k+3

            =>p chia hết cho 3

            =>p=6k+3 (loại)

p:6 dư 4=>p=6k+4

            =>p chia hết cho 2

            =>p=6k+4 (loại)

p:6 dư 5=>p=6k+5(thỏa mãn)

Vậy các số nguyên tố lớn hơn 3 luôn có dạng 6k+1 hoặc 6k+5

 

24 tháng 9 2021

\(a)\)Mọi số tự nhiên lớn hơn \(3\)khi chia cho 6 chỉ có thể xảy ra một trong \(6\)trường hợp: dư \(0\), dư \(2\), dư \(3\), dư \(4\), dư \(5\)

+) Nếu p chia \(6\)dư \(0\)thì \(p=6k\Rightarrow p\)là hơp số

+) Nếu p chia cho \(6\)\(1\) thì \(p=6k+1\)

+) Nếu p chia cho \(6\)\(2\) thì \(p=6k+2\Rightarrow p\)là hợp số.

+) Nếu p chia cho \(6\)\(3\) thì\(p=6k+3\Rightarrow p\) là hợp số.

+) Nếu p chia cho \(6\)\(4\) thì \(p=6k+4\Rightarrow p\) là hợp số.

+) Nếu p chia cho \(6\)\(5\) thì \(p=6k+5\)

Vậy mọi số nguyên tố lớn hơn \(3\) chia cho \(6\) thì chỉ có thể dư \(1\) hoặc dư \(5\) tức là :

\(p=6k+1\) hoặc \(p=6k+5\)

b) Nếu p có dạng \(6k+1\) thì \(8p+1=8\left(6k+1\right)+1=48k+9⋮3\) ; số này là hợp số.

Vậy p không có dạng \(6k+1\) mà p có dạng \(6k+5\), khi đó \(4p+1=4\left(6k+5\right)+1=24k+21⋮3\) . Rõ ràng \(4p+1\)là hợp số.