tìm tất cả các số pqr nguyên tố sao cho: p^2 = qr + 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề thi hsg lớp 9 Ninh Bình năm 2018-2019
Không mất tính tổng quát giả sử \(p\le q\le r\)
Với p=2q; 2qr=q+r+162
<=> \(4qr-2q-2r=324\)
\(\Leftrightarrow2q\left(2r-1\right)-\left(2r-1\right)=325\Leftrightarrow\left(2q-1\right)\left(2r-1\right)=5^2\cdot13\)
\(3\le2q-1\le2r-1\Rightarrow9\left(2q-1\right)^2\le\left(2r-1\right)\left(2q-1\right)\)
\(\Leftrightarrow9\le\left(2q-1\right)^2\le325\)
\(\Leftrightarrow3\le2q-1\le18\)
Do 2q-1 là ước của 52.13 nên nên 2q-1 \(\in\left\{5;13\right\}\)
Nếu 2q-1=5 <=> q=3 => r=33 (loại)
Nếu 2q-1=13 <=> q=7 <=> r=13 (tm)
pqr=p+q+r+160 <=> p(qr-1)-q-r=160
<=> (qr-1)(p-1)+pr-1-q-r=160
<=> (qr-1)(p-1)+q(r-1)-(r-1)-2=160
<=> (qr-1)(p-1)+(q-1)(r-1)=162
Nếu p lẻ => q,r lẻ => (qr-1)(p-1)(r-1) chia hết cho 4
mà 162 không chia hết cho 4 => Vô lý
Vậy bộ ba số nguyên tố cần tìm là (2;7;13) và các hoán vị
+Nếu p=2 => p+2=2+2=4 là hợp số (loại)
+Nếu p=3 => p+2=3+2=5, p+4=3+4=7 là các số nguyên tố (thỏa mãn)
+Nếu p>3:p lại là số nguyên tố=>p có dạng 3k+1 hoặc 3k+2(k\(\in N\)*)
-Với p=3k+1. Ta có: p+2=3k+1+2=3k+3 \(⋮\)3 là hợp số (loại)
-Với p=3k+2. Ta có: p+4=3k+2+4=3k+6\(⋮\)3 là hợp số (loại)
=> p>3 không thỏa mãn
Vậy p=3
do p là số nguyên tố =>p>=2
xét p=2 => p+10 =12 (không là số nguyên tố)
xét p=3 => p+10 =13 (là số nguyên tố ) ,p+14 =17 (là số nguyên tố)
=> p=3 thỏa mãn đề bài
xét p là số nguyên tố >3 => p không chia hết cho 3 . nếu p chia 3 dư 1
=> p+14 chia hết cho 3 mà p+14 >3 => p+14 không là số nguyên tố => vô lý
nếu p chia 3 dư 2=> p+10 chia hết cho 3 mà p+10 >3 => p+10 không là số nguyên tố
vậy với p là số nguyên tố >3 thì p không thỏa mãn đề bài
p=3 là số nguyên tố duy nhất thỏa mãn đề bài
+) Với p = 2 thì p + 2 = 2 + 2 = 4 là hợp số (Loại)
+) Với p = 3 thì p + 2 = 3 + 2 = 5, p + 4 = 3 + 4 = 7 là các số nguyên tố (Thỏa mãn).
+) Với p > 3: p là số nguyên tố nên suy ra: p = 3k + 1 hoặc p = 3k + 2 (k ∈ N*).
+) p = 3k + 1: Ta có: p + 2 = 3k + 1 + 2 = 3k + 3 = 3.(k + 1) ⋮ 3 là hợp số (Loại) +) p = 3k + 2:
Ta có: p + 4 = 3k + 2 + 4 = 3k + 6 = 3.(k + 2) ⋮ 3 là hợp số (Loại).
Với p > 3 không có giá trị nào thỏa mãn yêu cầu của bài toán.
Vậy p = 3
Để tìm tất cả các số nguyên tố p, q, r thoả mãn phương trình p^2 = qr + 4, ta sẽ thử từng trường hợp:
1. Trường hợp 1: p = 2 (vì 2 là số nguyên tố duy nhất là số chẵn)
- Thay p = 2 vào phương trình, ta được: 2^2 = qr + 4
- ⇒ qr = 0
- ⇒ Vì q và r phải là số nguyên tố, nên q = 2 và r = 0 hoặc q = 0 và r = 2 (nhưng vì r phải là số nguyên tố nên r = 2)
- ⇒ p = 2, q = 2, r = 2
Vậy, số nguyên tố p, q, r thoả mãn phương trình là: p = 2, q = 2, r = 2.