K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2024

Để tìm tất cả các số nguyên tố p, q, r thoả mãn phương trình p^2 = qr + 4, ta sẽ thử từng trường hợp:


1. Trường hợp 1: p = 2 (vì 2 là số nguyên tố duy nhất là số chẵn)

- Thay p = 2 vào phương trình, ta được: 2^2 = qr + 4

- ⇒ qr = 0

- ⇒ Vì q và r phải là số nguyên tố, nên q = 2 và r = 0 hoặc q = 0 và r = 2 (nhưng vì r phải là số nguyên tố nên r = 2)

- ⇒ p = 2, q = 2, r = 2


Vậy, số nguyên tố p, q, r thoả mãn phương trình là: p = 2, q = 2, r = 2.

14 tháng 5 2020

Đề thi hsg lớp 9 Ninh Bình năm 2018-2019

Không mất tính tổng quát giả sử \(p\le q\le r\)

Với p=2q; 2qr=q+r+162

<=> \(4qr-2q-2r=324\)

\(\Leftrightarrow2q\left(2r-1\right)-\left(2r-1\right)=325\Leftrightarrow\left(2q-1\right)\left(2r-1\right)=5^2\cdot13\)

\(3\le2q-1\le2r-1\Rightarrow9\left(2q-1\right)^2\le\left(2r-1\right)\left(2q-1\right)\)

\(\Leftrightarrow9\le\left(2q-1\right)^2\le325\)

\(\Leftrightarrow3\le2q-1\le18\)

Do 2q-1 là ước của 52.13 nên nên 2q-1 \(\in\left\{5;13\right\}\)

Nếu 2q-1=5 <=> q=3 => r=33 (loại)

Nếu 2q-1=13 <=> q=7 <=> r=13 (tm)

pqr=p+q+r+160 <=> p(qr-1)-q-r=160

<=> (qr-1)(p-1)+pr-1-q-r=160

<=> (qr-1)(p-1)+q(r-1)-(r-1)-2=160

<=> (qr-1)(p-1)+(q-1)(r-1)=162

Nếu p lẻ => q,r lẻ => (qr-1)(p-1)(r-1) chia hết cho 4

mà 162 không chia hết cho 4 => Vô lý

Vậy bộ ba số nguyên tố cần tìm là (2;7;13) và các hoán vị

14 tháng 12 2023

+Nếu p=2 => p+2=2+2=4 là hợp số (loại)

+Nếu p=3 => p+2=3+2=5, p+4=3+4=7 là các số nguyên tố (thỏa mãn)

+Nếu p>3:p lại là số nguyên tố=>p có dạng 3k+1 hoặc 3k+2(k\(\in N\)*)

    -Với p=3k+1. Ta có: p+2=3k+1+2=3k+3 \(⋮\)3 là hợp số (loại)

    -Với p=3k+2. Ta có: p+4=3k+2+4=3k+6\(⋮\)3 là hợp số (loại)

=> p>3 không thỏa mãn

Vậy p=3

 

31 tháng 3 2019

số cần tìm là 1979

7 tháng 2 2016

do p là số nguyên tố =>p>=2
xét p=2 => p+10 =12 (không là số nguyên tố)
xét p=3 => p+10 =13 (là số nguyên tố ) ,p+14 =17 (là số nguyên tố)
=> p=3 thỏa mãn đề bài
xét p là số nguyên tố >3 => p không chia hết cho 3 . nếu p chia 3 dư 1
=> p+14 chia hết cho 3 mà p+14 >3 => p+14 không là số nguyên tố => vô lý
nếu p chia 3 dư 2=> p+10 chia hết cho 3 mà p+10 >3 => p+10 không là số nguyên tố
vậy với p là số nguyên tố >3 thì p không thỏa mãn đề bài
p=3 là số nguyên tố duy nhất thỏa mãn đề bài

7 tháng 2 2016

moi hok lop 6 thoi

30 tháng 12 2023

+) Với p = 2 thì p + 2 = 2 + 2 = 4 là hợp số (Loại)

+) Với p = 3 thì p + 2 = 3 + 2 = 5, p + 4 = 3 + 4 = 7 là các số nguyên tố (Thỏa mãn).

+) Với p > 3: p là số nguyên tố nên suy ra: p = 3k + 1 hoặc p = 3k + 2 (k ∈ N*).

+) p = 3k + 1: Ta có: p + 2 = 3k + 1 + 2 = 3k + 3 = 3.(k + 1) ⋮ 3 là hợp số (Loại) +) p = 3k + 2:

Ta có: p + 4 = 3k + 2 + 4 = 3k + 6 = 3.(k + 2) ⋮ 3 là hợp số (Loại).

Với p > 3 không có giá trị nào thỏa mãn yêu cầu của bài toán.

Vậy p = 3

30 tháng 12 2023

???