Cho tam giác ABC, có trung truyến AM, lấy I bất kì trên AM, BI cắt AC tại K, CI cắt AB tại E. Chứng minh EK // BC. Cảm ơn ạ!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Vì $M$ là trung điểm của $BC$ nên $BM=CM$
Xét tam giác $ABM$ và $ACM$ có:
$AB=AC$ (giả thiết)
$AM$ chung
$BM=CM$ (cmt)
$\Rightarrow \triangle ABM=\triangle ACM$ (c.c.c)
b)
Từ tam giác bằng nhau phần a suy ra $\widehat{BAM}=\widehat{CAM}$ hay $\widehat{BAK}=\widehat{CAK}$
Xét tam giác $BAK$ và $CAK$ có:
$BA=CA$ (gt)
$AK$ chung
$\widehat{BAK}=\widehat{CAK}$ (cmt)
$\Rightarrow \triangle BAK=\triangle CAK$ (c.g.c)
$\Rightarrow KB=KC$
c) Từ tam giác bằng nhau phần b suy ra $\widehat{ABK}=\widehat{ACK}$
hay $\widehat{EBK}=\widehat{FCK}$
Xét tam giác $EBK$ và $FCK$ có:
$\widehat{EBK}=\widehat{FCK}$ (cmt)
$BK=CK$ (cmt)
$\widehat{EKB}=\widehat{FKC}$ (đối đỉnh)
$\Rightarrow \triangle EBK=\triangle FCK$ (g.c.g)
$\Rightarrow EK=FK$ nên tam giác $KEF$ cân tại $K$
$\Rightarrow \widehat{KEF}=\frac{180^0-\widehat{EKF}}{2}(1)$
$KB=KC$ nên tam giác $KBC$ cân tại $K$
$\Rightarrow \widehat{KCB}=\frac{180^0-\widehat{BKC}}{2}(2)$
Từ $(1);(2)$ mà $\widehat{EKF}=\widehat{BKC}$ (đối đỉnh) nên $\widehat{KEF}=\widehat{KCB}$
Hai góc này ở vị trí so le trong nên $EF\parallel CB$ (đpcm)
b: Ta có: ΔBAC cân tại A
mà AM là đường phân giác
nên M là trung điểm của BC