chứng minh (a^3 , b^4) = 1 phương pháp phản chứng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(a\left(2-b\right)>1,b\left(2-c\right)>1,c\left(2-a\right)>1\)
\(\Rightarrow abc\left(2-a\right)\left(2-b\right)\left(2-c\right)>1\) (1)
Mặt khác, ta có:
\(a\left(2-a\right)=-a^2+2a=-\left(a-1\right)^2+1\le1\)
Tương tự, \(b\left(2-b\right)\le1,c\left(2-c\right)\le1\)
\(\Rightarrow abc\left(2-a\right)\left(2-b\right)\left(2-c\right)\le1\),điều này trái với (1)
Vậy điều giả sử là sai.
Do đó ít nhất 1 trong 3 bất đẳng thức trên là sai.
Giả sử a+b>2
=>\(a^3+b^3+3ab\left(a+b\right)>\left(a+b\right)^3=2^3=8\)
=>\(2+3ab\left(a+b\right)>8\)
=>\(3ab\left(a+b\right)>6\)
=>\(ab\left(a+b\right)>2\)
=>\(ab\left(a+b\right)>a^3+b^3\)
=>\(0>a^3+b^3-ab\left(a+b\right)\)
=>\(0>\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\)
=>\(0>\left(a+b\right)\left(a^2-2ab+b^2\right)\)
=>\(0>\left(a+b\right)\left(a-b\right)^2\)
Vì a+b>2 (điều đã giả sử) và (a-b)2\(\ge0\) <=>\(\left(a+b\right)\left(a-b\right)^2\ge0\)
=>\(0>\left(a+b\right)\left(a-b\right)^2\) là vô lý
=>\(a+b\le2\)
Ta có đpcmGiả sử tồn tại hai số a,b sao cho \(a^3+b^3=2\) và \(a+b>2\)
Khi đó, đặt \(a=x+y\) , \(b=x-y\)
Ta có \(a+b=x+y+x-y=2x>2\Rightarrow x>1\)
\(a^3+b^3=\left(x+y\right)^3+\left(x-y\right)^3=2x^3+6xy^2\)
Do x > 1 nên \(2x^3>2;6xy^2\ge0\). Suy ra \(a^3+b^3>2\) , trái với giả thiết đề bài.
Vậy ta có đpcm
a) Giả sử ngược lại rằng a ≥ 1 và b ≥ 1. Ta suy ra a + b ≥ 2.
Điều này mâu thuẫn với giả thiết a + b < 2. Vậy một trong hai số a và b phải nhỏ hơn 1.
b) Giả sử ngược lại rằng n là số tự nhiên chẵn, n = 2k (k ∈ N). Khi đó 5n + 4 = 10k + 4 = 2(5k + 2) là một số chẵn. Điều này mâu thuẫn với 5n + 4 là số lẻ. Vậy nếu 5n + 4 là số lẻ thì n là số lẻ.
a) Giả sử ngược lại rằng a ≥ 1 và b ≥ 1. Ta suy ra a + b ≥ 2. Điều này mâu thuẫn với giả thiết a + b < 2.
Vậy một trong hai số a và b phải nhỏ hơn 1.
b) Giả sử ngược lại rằng n là số tự nhiên chẵn, n = 2k (k ∈ N). Khi đó 5n + 4 = 10k + 4 = 2(5k + 2) là một số chẵn. Điều này mâu thuẫn với 5n + 4 là số lẻ.
Vậy nếu 5n + 4 là số lẻ thì n là số lẻ.
Giả sử \(\sqrt{2}\)là số hữu tỉ thì \(\sqrt{2}=\frac{a}{b}\left[\left(a,b\right)=1\right]\)
\(\Rightarrow a^2=2b^2\)(1)\(\Rightarrow a^2⋮2\)
Mà 2 là số nguyên tố nên \(a⋮2\)
Đặt a = 2k.Thay vào (1), ta được: \(4k^2=2b^2\Rightarrow2k^2=b^2\)
\(\Rightarrow b^22⋮\).Mà 2 là số nguyên tố nên \(b⋮2\)
Vậy a và b cùng chia hết cho 2, trái với (a,b) =1
Vậy \(\sqrt{2}\)là số vô tỉ hay \(\sqrt{2}+3\)là số vô tỉ (đpcm)
Vì 3 là số hữu tỉ rồi nên phải cần c/m √2 là số vô tỉ là đc!
Giả sử √2 là số hữu tỉ
=> √2 = a/b với a, b nguyên và a/b tối giản hay (a ; b) = 1 (1)
√2 = a/b
<=> 2 = a²/b²
<=> b² = a²/2
=> a² chia hết cho 2
=> a chia hết cho 2 (vì 2 là số nguyên tố) (2)
=> a = 2k. Thay vào :
2 = a²/b²
<=> 2 = (2k)²/b²
<=> b² = 2k²
=> b² chia hết cho 2
=> b chia hết cho 2 (3)
Từ (2) và (3) => ƯC (a ; b) = 2
=> Mâu thuẫn (1)
=> Điều giả sử là sai
=> √2 là số vô tỉ (đpcm)
Giả sử các số nguyên tố là một dãy hữu hạn, tăng dần như sau:
\(2;3;5;7;.........;n\)
Xét số \(p=\left(2\times3\times5\times7\times.....\times n\right)+1\)
ta thấy ngay p không chia hết cho \(2;3;5;7;...;n\)
=> p cũng là một số nguyên tố.
Vậy điều giả sử sai hay có vô hạn số nguyên tố.
sai đề à